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Abstract—In the field of developmental agent learning,
Radical Interactionism introduces a novel formulation of the
problem of self-discovery of sensorimotor possibilities, environ-
mental properties and the development of behaviours without
external rewards.

Agent architectures following this approach have proven
capable of inferring the properties of space, building models of
local environments and developing behaviours satisfying inborn
motivational drives, without a priori knowledge. However, new
challenges are expected when extending this approach to multi-
agent systems, where behaviours involve interactions with other
agents driven by their own, unknown, decision systems.

In this article, we propose an architecture based on inter-
actionist principles, capable of inferring the motives of other
agents whose motivational systems are not known a priori. The
interactionist agent thus learns to predict the behaviour of other
agents, improving its chances of interacting with them. We
illustrate our proposal with an example of a working system
implemented on an interactionist agent in a prey-predator
multi-agent context.

Index Terms—developmental learning, interactionism, affor-
dance, autonomous mental development, spatial awareness.

I. INTRODUCTION

Developmental learning [1] (DevL [2]) encompasses a
set of bio-inspired approaches drawing on discoveries in
fields ranging from neuroscience to psychology to propose
new ways of designing autonomous artificial agents. It is
fundamental research on the principles of learning, from
animal to human-like intelligence. Unlike other approaches
seeking optimal policies to accomplish specific tasks (e.g.
Reinforcement Learning [3], Deep RL [4], MARL [5]) , a
particular focus of developmental learning is the develop-
ment of agents capable of interacting with their environment
without any a priori knowledge about it or their own abilities.

According to the developmental approach, an agent con-
structs an emergent model of its sensorimotor systems and
environment by interacting with it, to enable the generation
of behaviours driven by intrinsic motivation [6], thus remain-
ing independent from any external cause or supervision.

The interactionist approach [7] assumes that perception
is the result of an agent’s action, its experience providing
a greater information content than passive sensory percep-
tion [8]. Optical flow or tactile feedback are examples of
this phenomenon. The agent is therefore proactive in the
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perception process, which becomes an internal construct
resulting from the active experience. This approach is in
line with constructivism [9] and enactive learning [10],
which assume that learning about the environment and the
emergence of behaviours are built on the basis of sensory-
motor schemes [11]. These schemes, which we will call
interactions, comprise the atomic elements with which the
agent must discover its environment, then build its model
and finally develop behaviours of increasing complexity.

As the complexity of behaviours increases, the agent
will soon face problems involving other agents. In such
multi-agent perspectives, the interactionist approach must
be extended to the development of collective, adversarial
or collaborative behaviours. This requires the ability to
anticipate the behaviour of other agents, always without any
a priori knowledge about them or their motivations.

In this paper, we propose an architecture based on inter-
actionist principles to infer the behaviour of agents whose
motivational systems are not known a priori, on the assump-
tion that their movements are motivated by the presence
of entities in their local environment. The paper is orga-
nized as follows: Section II provides a state of the art of
developmental and interactionist approaches, and describes
the basic principles of our architecture. Section III describes
the proposed architecture and Section IV shows a working
system demonstrating this architecture. Finally, Section V
summarizes this research’s main contributions and discusses
on future development perspectives.

II. BACKGROUND AND RADICAL INTERACTIONISM
FRAMEWORK

One of the first challenges in developing an agent with no
a priori knowledge is building a model of its sensorimotor
system (or Body Schema). Sensorimotor learning models
abound in the literature [12], including intrinsic motivation
models such as artificial curiosity [6]. These models can
reach high-level sensorimotor patterns, such as walking gaits,
they are however not ideally suited for longer-term behaviors.

The Radical Interactionism (RI) model [7], illustrated in
Fig. 1 considers that perception is the feedback generated
by actions, and describes sensorimotor patterns as couples
(action, result) called interactions. Hierarchical sequences
of interactions can be formed to generate behaviours of
increasing complexity. This model introduces the principle
of interactional motivation [13], which guides both the devel-
opment and subsequent behaviour of the RI agent according
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Fig. 1. Comparison of Reinforcement Learning (left) and Radical Interac-
tionism (middle and right). In RL, an observation oy is analysed by the agent
to select an action u. The resulting change of state generates a reward r¢41
which the agent seeks to maximize. In RI, the cycle begins with an intention
of the agent, who enacts a sensorimotor scheme (interaction) i, and receives
as feedback the sensorimotor scheme e; that was actually experienced. the
agent has no direct access to the environment. The learning model focuses
on the relationships between interactions and tries to predict their results.
Parallel RI (right) states that the feedback experienced from enacting an
interaction is a set of interactions Ey.

to in-born numerical values associated with each interaction,
called valences. These valences are used to model the agent’s
drives (e.g. eating food ’feels good’) and the environment’s
constraints (e.g. a collision is ’painful”) without relying on an
external interpreter, states, or predefined goals to evaluate the
agent’s behaviour. Furthermore, valences steer decisions a
priori as an operating drive, but are not taken into account in
learning as parameters to be optimized, thereby dissociating
the generated sensorimotor model from the decision-making
model. Thus, the learning model of a RI agent focuses more
on the reliability of the constructed model and predictions
than on efficiency in solving a predefined task.

Parallel Radical Interactionism (PRI) [14] extends RI to
handle complex environments. In PRI, intending an in-
teraction may result in experiencing multiple interactions
simultaneously. This set of experienced interactions (£;) has
a causal link with the intended interaction. For instance,
the optical flow measured by a point on the retina provides
in itself little information, but, combined with the agent’s
movement, can inform it of the relative distance of an entity.

In a realistic environment, sensorimotor learning is hin-
dered by the number of possible actions and outcomes. An
approach to this issue is to consider that the result of a
sensorimotor pattern is linked to the presence of phenomena
in the environment, akin to an affordance [15], defined here
as a possibility of interaction offered by the environment to
the agent [16], whose presence or absence affects the result of
its action. The use of affordances as a means of representing
the environment has been extensively studied [17]. Some
approaches sense the presence of affordances to determine
the crossability of an environment [18], or locate positions
from which a robotic arm can grasp an object [19]. However,
due to their strong coupling with the sensory system, these
models are unable to make longer-term predictions without
additional spatial information [20].

In a RI model, an affordance can be defined as the implicit
particular configuration of physical elements and/or prop-
erties in an egocentric frame of reference whose presence
enables its successful enaction. Detecting the affordance of
an interaction based on feedback experienced from previ-
ously enacted interactions, which are also afforded by their
affordances, allows for a recursive process that enables the

detection of distant affordances and the emergence of longer-
term or compound behaviours [14].

As an agent improves its understanding of the environ-
ment, it will find itself confronted with particular affordance
phenomena whose prediction error cannot be reduced. Their
affordances are linked to mobile entities driven by an un-
known motivational system: they are other agents.

In the field of multi-agent systems, abundant research has
been devoted to modelling interactions between agents [21].
These models are given by a designer and can be instantiated
to fit a particular problem.

Autonomous development requires the agent to learn to
infer the intention of another agent without any a priori
knowledge of their decision systems, based solely on knowl-
edge acquired during sensorimotor learning. Assuming the
other agent follows a simple reactive decision model, the
prediction of its behaviour comes down to determining which
affordances are attractive and which are repulsive. For a RI
agent, it amounts to building a model of another agent using
the same RI principles (regardless of its internal workings).
The RI agent has to locate affordances relevant to the
other agent and establish the context from the other agent’s
point of view. By observing its behaviour, the RI agent
gradually estimates how it values the various affordances and
eventually predicts its most likely move.

The following section introduces an architecture extending
the PRI model to enable an agent to detect, integrate and
predict the movement of other agents in its environment.

III. AN INTERACTIONIST LEARNING ARCHITECTURE FOR
PREDICTING BEHAVIOUR IN A MULTI-AGENT CONTEXT

In our architecture, the agent’s model initially contains
a set of sensorimotor schemas, or interactions, and builds
structures from these interactions to characterize the agent’s
environment and generate behaviour that satisfies its moti-
vational principles. The architecture, shown in Fig. 2 can be
divided into 3 main modules:

1) The decision module which uses data from the other
two modules to select the next interaction to enact,
either to improve the agent’s model or to generate
behaviours satisfying its interactional motivation.

2) The entity module learns to define the entities popu-
lating the environment on the basis of the interactions
they afford (therefore, entities will be called “affor-
dances”), and to predict the results of interactions.

3) The space module generates an internal representa-
tion of the local environment in ego-centric space. It
exploits the properties discovered by the entity module
to detect remote affordance instances. This module
also manages a structure that maintains the position
of affordance instances as the agent moves, even when
the agent is no longer able to detect them. Finally, by
leveraging this knowledge, the module learns to predict
the behaviour of moving entities.

Before going into the details of each of these modules,

we will briefly review the notions, notations and intuition
of the interactionist concepts involved. Sections 3.1 to 3.4



summarize mechanisms previously described in [14], [22],
[23], and Section 3.5 describes the additional mechanisms
that finalize the architecture.

A. Interactionist concepts

When a PRI agent [14] intends an interaction ¢; at decision
cycle ¢, it experiences the set of interactions E; which are
actually enacted. The enaction of 4; is a success if i; € F;
and a failure otherwise. An agent who chooses the interaction
iy = move may experience a movement, the interaction of
moving is then considered a success: iy € ;. Additionally,
it may experience particular variations in its perceptual field
(e.g. optical flow, Doppler effect) linked to the interaction
i; to form the other experienced interactions of FEj. The
interaction ¢; = move may also fail, in which case the agent
will not experience movement, ¢; ¢ F;. In its place, the agent
may experience an interaction of colliston.

Thus, the agent does not have direct access to its environ-
ment and ’perceives’ it by actively interacting with it. The
experienced feedback can be used to predict the outcome of a
following intended interaction, which dispenses with notions
external to the agent, such as entities and affordances. These
terms will henceforth be used to help the reader interpret
how the agent works. The notion of affordance to which
we will refer is the particular context of elements located
to the agent, whose presence makes the successful enaction
of its associated interaction possible. The affordances are
thus implicitly defined by the agent-environment coupling,
following the Stroffegen [24] and Chemero [25] definitions.

The notion of space is initially unknown to the RI agent.
However, interactions are related to affordances that can be
localized in space, and the enaction of an interaction can
be associated with a specific movement (in an egocentric
reference frame). Thus, the agent implicitly generates a
notion of space through relations between interactions, which
differs from a Euclidean geometry, but incorporates the
agent’s sensorimotor properties. Section III-D shows how
this principle is used to generate a model of space.

B. Decision module

The decision module is tasked with planning the agent’s
behaviour in accordance with its own motivational principles,
based on interactional motivation (Sec. II). The agent’s
behaviour is oriented by assigning a numerical valence
v; to each interaction ¢, defining the immediate utility of
successfully enacting 7.

When no interactions with high valences are immediately
possible, the exploitation mechanism tries to lead the agent
towards distant affordance instances that afford interactions
with a ’positive’ valence (and away from ’negative’ af-
fordances) [14]. To that end, the spatial module provides
for each affordance instance a tuple (a,i,d) denoting the
afforded interaction a, an interaction ¢ that brings it closer,
and the distance d estimating its proximity (i.e. the minimum
number of interactions to enact to reach it). An interaction
adds to its valence an utility value depending on affordance
instances that it can lead to (Eq. 1):
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where v, is the valence of the interaction ay, (ak, jk, di)
an instance of the affordance of a; stored in memory M,
which can be brought closer by enacting the interaction 4
(i.e. © = jg). f is a strictly decreasing and positive function
characterizing the importance of an affordance according to
its distance in the agent’s decisions-making process, and 3
is a coefficient for delayed satisfaction [14]. We can note
that a change in valences (e.g. the value of ’eat’ decreases
when satisfied) will instantly modify the attractiveness of
surrounding affordances.

In the case of a simple reactive behaviour, the operating
mechanism selects the interaction with the highest utility
from among those considered enactable in the current con-
text. More complex decision mechanisms accounting for the
agent’s ability to modify its environment were presented in
a previous work [26].

The possibility of enacting an interaction ¢ according to
the agent’s current feedback FE; is provided by the Entity
module (Sec. III-C) as the confidence in the possibility or
impossibility of enacting ¢. When this confidence is low (e.g.
initial learning or changes in the environment’s properties), a
curiosity mechanism is triggered, to select and test an inter-
action to reinforce the learned structures. As the agent comes
to characterize its environment, confidences rise and curiosity
gradually gives way to exploitation (although curiosity can
be used in the case of changes in the environment).

C. Entity module

This module determines which interactions can be enacted
given a feedback FE;. Such sets, which characterize the
properties of an affordance from a sensorimotor point of
view, are called signatures. Formally, a signature is defined
as a function S; that gives the agent’s confidence in the
prediction of the outcome, success or failure, of +’s enaction
as a function of the feedback FE, (absolute confidence in
success if S;(F;) = 1 and absolute confidence in failure
if S;(E;) = —1). The parameters of a signature S; are
adjusted after each intention of ¢ according to the outcome
experienced, to improve the predictions.

The signature S; identifies one or more sets of interactions
{j1,---,Jn} such that if {j1,..., 4, } C E¢, then i can be suc-
cessfully enacted. These sets thus characterize the affordance
of i from the agent’s point of view. The signature implemen-
tation must define a pseudo-reverse function S; providing
sets {J1,...jn} characterizing the presence of the affordance
of i for S;(1) or its absence for S;(—1). Signatures integrating
static or predictable affordances were implemented as formal
neurons [14] and lists of interactions (LUT) [26].

Affordances offered by mobile entities are susceptible
to move during the enaction of an interaction. Thus even
if the affordance is present, the interaction may still fail.
Conversely, the mobile entity may afford the interaction from
multiple positions k depending on its movements.
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Fig. 2.

Architecture for inference and prediction of mobile entities in a Radical Interactionism model (mechanisms of the static affordance architecture

[14] are in black). In red, the prediction and decision mechanisms presented in this paper, finalize the complete architecture, enabling efficient behaviours
for interacting with mobile entities. Green and blue mechanisms were studied respectively in [22] and [23]. The decision module (Section I1I-B) exploits the
environment model generated by the two other modules to generate behaviours satisfying the interactional motivation principles, or to test and reinforce data
structures. The entity module (Section III-C) contains the initial set of sensorimotor schemes (interactions) and learns to predict the results of interactions
by constructing data structures, called signatures, that characterize the affordances of interactions. The spatial module (Section III-D) exploits signatures
to detect distant instances of affordances. Detected static affordances are stored in the Egocentric Space Memory that maintains a context of affordances
while the agent moves. The module performs reference changes on the affordance context to infer behavioural preferences of mobile affordances. These
preferences are then exploited to predict future positions of mobile affordances, and define data structures called interception sequences, that can be directly

exploited by the decision mechanism.

We introduced the partial signature C;j, to characterize
the presence of the affordance of i (C;x(E:) = 1) or
its absence (C;x(E;) = —1) at one of the positions k.
A signature learning process must discover the possible
positions of the mobile entity affording ¢, and construct the
signature S; as a set of partial signatures C; ;. The notion of
enaction probability, independent of the enaction confidence,
quantifies for each partial signature C;j, the probability
pi.k that the detection of an affordance of 7 at position k
will actually lead to the success of 4, i.e. the probability
that the mobile entity moves in the direction allowing the
enaction of 7. Our implementation, described in [22], uses
multiple neurons combined by a Winner-Takes-All rule to
integrate multiple contexts, with S;(E;) = maxzi(C; (Et)),
and estimate the probability of each position k.

D. Space module

This module exploits interaction signatures to identify
remote affordances (i.e. requiring prior movement to reach
them), and generate a model able to store, locate and track
the position of instances of affordances, according to the
movement of the agent and possible occlusion (i.e. object
persistence [11]).

1) Detecting instances of affordance: This mechanism
leverages a property of interaction signatures: a signature .S;
defines sets of interactions {ji, ..., ji, ..., jn } € Si(1) character-
izing the affordance of i. However, these interactions j; may
have their own signatures. Since some interactions result in
transformations in space (i.e. movement of the agent), it is
possible to ’project’ the required affordance’s position into
space, in agent-centered reference frame, by means of an
interaction j, defining an element designated by S which, if
the agent enacts j, will afford . This process can be applied
recursively through an interaction sequence o = (i1, ..., 4m),
thus giving a projected signature S7. Several sequences may
lead to the same projected signatures, in which case only the

shortest is retained. When a high confidence (i.e. greater than
a threshold) S? (E}) is established, we consider that an affor-
dance instance is discovered at a position characterized by o.
A sequence o characterises a position in space independently
of its accessibility (i.e. o is not necessarily enactable).

The detection of remote instances of mobile affordances
adds the complexity of multiple partial signatures Cj g,
projected independently with each new interaction added to
o. The probabilities of the partial signatures are multiplied
consecutively with each new projection. The projection of a
signature .S; would thus lead to the generation of numerous
projected partial signatures C, with low probabilities. Our
solution [23] is to keep only 7, with the highest enaction
probability for each initial partial signature Cj, at each
new projection. Thus, to each C;; of a signature S; and
sequence o corresponds a single projected partial signature
C7 - This set of partial projected signature C, constitutes
the projected signature .Sy, and designates the positions from
where a mobile affordance of ¢ may afford ¢ after enacting
o. Consequently, the same instance of affordance of ¢ will be
detected by multiple projected signatures S7* of .S;, each oy,
sequence corresponding to a future position of the affordance
instance at time ¢ + 1.

The Egocentric Space Memory (ESM) sub-module man-
ages a representation of local space with the affordances dis-
covered. Affordance instances are recorded as tuples (a, i, d)
used by the decision module, which indicate the afforded
interaction a, and its position derived from ¢ as the elements
i and d. ¢ represents the “direction” of the affordance (first
interaction of o), d corresponds to the distance (length of o).
The set of affordances forms the agent’s affordance context,
denoted M;. The ESM learns to predict the changes in the
position of affordances in the egocentric space when the
agent performs an interaction, thus implicitly generating a
geometric structure of space based on interactions [14].



2) Inferring the motivations of mobile entities: This mod-
ule uses the hypothesis that, like the RI agent, all agents are
driven by a decision mechanism that reacts to surrounding
affordances (eq. 1) according to behavioural preferences that
are unknown a priori. These preferences can be estimated
according to the movement of other agents relative to the
affordances (i.e. variations in distance).

The RI agent cannot know the interactions available to
another agent, nor their valences. It can however observe
changes in the other agent’s position and estimate the attrac-
tiveness of the other agent to its own affordance.

Formally, the RI agent determines a set of values v”
indicating the valence that the affordance of interaction i
(of the RI agent) has for the other agent, itself identified by
the RI agent as the affordance of interaction w. Thus, the
RI agent requires interactions not only with other agents,
but also with any objects likely to affect their behaviour.
For instance, a predator must be able to interact with a prey
(i.e. eat it), but also have a specific way to interact with the
prey’s food source allowing it to discriminate this element,
and therefore to identify it as an attractor of prey.

The interactionist representation of space does not allow
measuring the Euclidian distance between two distant affor-
dances (Sec. III-A). Inferring the behavioural preferences of
a target agent requires changing the frame of reference to
the point of view of the target to estimate the distances to its
surrounding affordances. A trained ESM already possesses
all the operations required to implement this process [14].
The change of frame of reference can be achieved by
simulating the enaction of a o sequence characterising the
position of the target agent. This simulation in the ESM
produces an affordance context M locating affordances
from this point of view as tuples (ay,, in, dy).

To account for the multiple o), sequences representing the
instance m of a mobile affordance (i.e. another agent), the
distances between the target agent and the surrounding affor-
dance instances are defined as the average of the distances
for the different o, positions. The average simulation M,
provides the average affordance context, giving the nature

(i.e. ai) and average distance d,, of the affordances from

this point of view, as couples (a,, d,,). A utility value can be
. ——w .

defined according to the current context M t‘ and estimated

preferences v;¥ as Eq. (2):
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where f is the same decreasing function as in eq. 1, giving
a greater importance to the closest affordances.

The variations in distances over consecutive steps reveal
which affordances the target agent tends to move towards,
or to flee from. Assuming the other agent behaviour is
mainly reactive, it will try to maximise the utility of its
actions. The variation uy” — uj” ; between two time steps
should be positive, otherwise the estimated valences v’
must be corrected for each type of affordance present. A
preliminary work implementing this principle [23] shows that

the behavioral preferences can be estimated accurately.

E. Tracking and predicting the movement of mobile entities

The inferred model of motivation can be used to predict
the most likely future position of the target agent. As it is
expected to move toward affordances affording interactions
with the greatest valences, we can make the hypothesis that
its next position will be the position, among the ones that
it can reach at step ¢t + 1, that has the greatest utility value.
Thus, this position can be predicted by computing the utility
value of each detected position o of the mobile affordance
w (Eq. 3), and selecting the oy, mq, sequence producing the
highest utility value as the next position of the target agent.
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To predict further steps, this process can be repeated by
considering the predicted position oy mq, as the current
position of the target agent. To that end, this predicted
position must be integrated in a simulated feedback E; that
the RI agent would have experienced if the target agent were
in this position, i.e. the set of interactions {ji,...,Jjn} that
would be experienced as a consequence of the presence of
the target agent at Oy, pq.. The context designated by the
partial signature C’Z)’fl‘c’”” associated with o ;ma., With the
greatest enaction probability, is used.

The simulated feedback F; is used to repeat the prediction
process recursively and derive a probable trajectory for the
target agent. The recursion may be halted when the predicted
position may be reached by the RI agent in a number of steps
equal to the number prediction steps (i.e. an interception
point is found), when the ESM does not allow the next step
to be simulated (e.g. an affordance is no longer located with
sufficient precision, see [14]), or by a technical limit, such
as a maximum length of sequences.

When an interception trajectory is thus defined, its se-
quence is considered as the actual position of the moving
entity. However, such a ”position” can only be maintained
while the agent strictly perform the interception sequence,
the position being lost if the agent must change its trajectory,
for example, to avoid an obstacle. Thus, we propose to
maintain a set of interception sequences of different lengths
to allow the agent to keep track of the position even if it
should deviate from the shortest path, offering the possibility
of taking into account other elements of the environment.

The interception sequences cannot be managed by the
ESM: as the ’position’ of the mobile entity depends on the
interception sequence (especially its length), it cannot be
updated like a static affordance. To track a mobile entity
without resorting to the ESM, the sequential nature of such
a ’position’ is exploited. It is possible to update the position
to the next instant by removing the first interaction from
the sequences which begin with the enacted interaction, and
discarding the others as no longer valid. An interception
sequence o = (i, 0’) is updated to o’ when the agent enacts 1.
Thus, the mobile entity is accounted for in the decision



process, even if it or its predicted interception point leave
the perceptual field of the agent.

The interception sequences are provided to the decision
module (Sec. III-B) as (a, i, d) tuples, using the first element
and the length of a o interception sequence as the ¢ and d
parameters, respectively.

IV. DEMONSTRATION ON A WORKING SYSTEM

To illustrate our proposal, we have implemented our
architecture in a prey-predator context, where a predator must
infer prey behaviour (i.e. attraction to its food source) to
predict its movement and intercept it efficiently.

The predator is endowed with the following interactions
(valences in parentheses): move forward > (2), collide with
an obstacle » (-5), eat » (50), turn right < (-3) and left &~
(-3) by 90°. It can also experience interactions associated
with its visual system as an outcome of other interactions.
These interactions occur in a field of view of 180° in front
of the agent. As mentioned in Section III-D.2, the predator
must have an interaction with the prey’s food source to infer
attraction behaviour, even if this interaction has no purpose
in itself. This is modelled by a particular sensation of contact
(different that of empty space), when moving over a prey’s
food source, defining the slide interaction » (0). The visual
system provides a set of additional outcomes produced when
enacting a primary interaction (except bump that does not
produce movement). This visual system discretizes space in
front of the agent as a regular grid of 15x9 positions and
perceive 3 colors, for a total of 15x9x3x5=2025 uninterpreted
’visual’ interactions.

This experiment only assesses the prediction module, and
uses signatures acquired in previous experiments. For more
details on how to generate signatures, see [23]. To exclude
possible interference with the evaluation of the prediction
module, the ESM (Sec.III-D) is substituted for a static
program updating affordance contexts M; from detected
instances of affordances. Since the prediction module relies
on discrete abstractions of the environment generated by
other modules, the environment chosen for the experiment
is also discrete to simplify the interpretation of the results.
The localisation of affordances in a continuous environment
is covered in [14]. A previous work [23] demonstrated
the ability of the agent to infer valences for prey with an
accuracy close to the ground truth. For this demonstration,
the valences of bump (-0.2) and slide (2) for the preys are
provided to the agent.

Fig. 3 shows and compares the generation of behaviour,
with and without the interception mechanism. After enacting
an initial interaction, the ESM registers three static affor-
dances, corresponding to the interaction bump (wall blocks)
on the left and right, and the interaction slide (food source
for the prey, i.e. the seaweed) on the top right. The content
of the ESM is shown in the top block at step O: tuples of
the form (a, i, d). When the prediction mechanism is disabled
(Fig. 3a), the agent locates the mobile affordance of eat (fish)
at time ¢ using the most likely sequences leading to its current
position (bottom block at step 0). The agent attempts to reach
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Fig. 3. Generation of an behaviour to capture a prey. a) The prediction
mechanism is disabled. Top: the agent (grey shark) in its environment, and
the trajectory over the next ten decision cycles. Bottom: the timeline displays
at each step one of the most probable positions (among multiple sequences),
and the proposed interaction. At step 0, the timeline details the position of
detected static affordances, encoded ad triplets (a,i,d): two affordances of
bump and one affordance of slide. As the fish moves at same speed than
the agent, the latter cannot reach the fish until it stops. b) The prediction
mechanism is enabled. The middle insert shows the predicted trajectory of
the prey at step O: future positions are represented with a sequence of blue
circles of decreasing diameters. The timeline displays at each step a sample
of interception sequences and updates, and the interaction proposed by the
mechanism. By enacting one of the interception sequence, the agent is able
to intercept the prey before it reaches the algae. The set of interception
sequences allowing to keep track the future position of the prey even when
leaving the agent’s perceptual field (steps 3 and 4).

the current position of the prey, and as this affordance is
mobile, its position is recalculated at each step, as shown by
the fluctuation in the interaction sequences from steps 1 to
10. Since the fish moves at the same speed as the agent, the
latter will pursue its prey and will only be able to enact eat
when the fish reaches the seaweed and stops.

With the prediction mechanism active (Fig. 3b), a set of
interception sequences is generated (bottom block at step 0).
The agent moves towards the calculated interception point
by following one of the possible sequences. As the position
of the interception point does not change, we can see that
the interaction sequences evolve from one stage to the next
by unstacking the enacted interaction. The prediction mech-
anism maintains several possible interception sequences,
which allows the agent to favour one or the other according
to the presence, or even the discovery of new affordances.
In the present example, the interception sequence keeping



the agent distant from the obstacle is preferred, due to the
negative valence of bump afforded by the obstacle.

At step 2, we notice that the agent turns towards the
interception point instead of its current position, which
demonstrates the ability to anticipate the future position of
the affordance. During this manoeuvre, the prey leaves the
agent’s perceptual field, and although the interception point
could not be recalculated if unforeseen changes occurred,
updating the sequence acts as a memory that maintains the
affordance in the decision process. Finally, at step 5, the
agent finds itself in a configuration where eat can be enacted,
and fosters this interaction, due to its high valence, at step 6.

V. CONCLUSION

This paper introduces an architecture based on interac-
tionist principles, with which an agent builds an emergent
model of its environment and generates behaviours enabling
agent-to-agent interactions in multiagent contexts. To do
so, it integrates mobile entities into its model, infers their
behavioral preferences, predict their future positions and
generate behaviours that maximise the chances of interacting
with them. This mechanism requires no a priori knowledge
of the environment and its entities, and is capable of inferring
properties by interacting through sensorimotor patterns.

This architecture presents two limitations inherent to
learning exclusively from sensorimotor possibilities. Firstly,
the interactions available to the agent must encompass the
affordances relevant to the moving entities to detect them.
Secondly, predictions are biased by the agent’s experience
in the environment and by the operation of its own decision
system. We plan to study how these biases can affect the
emergence of collaborative behaviour in populations com-
posed of agents with different sensorimotor capabilities.

Our next step is to study a high-level decision mechanism
exploiting these predictions to generate behaviours of greater
complexity, taking into account the use of this mechanisms
by other agents. We aim at the emergence of collaborative
behaviour in multi-agent contexts, such as the influence
of the predator’s presence on the prey’s behaviour, or the
emergence of encircling tactics when hunting large prey.
Such applications require the integration of the agent itself
in the prediction of the behaviour of other agents, a first
step in developing intersubjectivity between agents. We will
also study the inference of a hidden affordance through other
agents’ behaviour.

As mentioned previously, the demonstration shown in this
article uses a simple and intuitive environment, in order to
make the structures generated easy to interpret and evalu-
ate. However, the mechanisms of the architecture are not
strictly limited to Euclidean or even physical spaces. Their
general function is the discovery of regularities in transfor-
mations produced by interactions in spatially homogeneous
and isotropic environments, generating abstract notions from
interaction possibilities. Further avenues of research could
investigate scenarios involving different topological (non-
topographical) spaces, or even abstract spaces, such as dy-
namic social organizations and communication.
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