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Abstract— Allowing autonomous agents to learn by them-
selves to interact with other agents requires that they be able
to recognize each other and be capable of inferring their
behaviors. To comply with artificial developmental learning,
we follow the radical interactionism hypothesis, in which an
agent has no a priori knowledge on its environment. A previous
work has shown that the agent can learn to identify, localize,
and predict movements of mobile elements, but was only tested
in discrete environments, limiting their applicability on real-
world systems. This paper presents new mechanisms for the
identification and localization of mobile entities in a continuous
environment. These mechanisms learn the relations between
the agent’s sensorimotor patterns and the entities, static or
mobile, affording them, and store discovered properties in data
structures called Signatures. The properties of signatures are
then exploited to detect distant entities in surrounding environ-
ment without relying on a geometrical notion of space. These
mechanisms were tested in a simple environment, the results
showed how signatures integrate the complexity of a continuous
environment through the limited sensory system of the agent,
and localize distant entities through data structures that are
compatible with previously developed behavior inference and
prediction mechanisms.

Index Terms—developmental learning, interactionism, affor-
dance, autonomous mental development, spatial awareness.

I. INTRODUCTION

We address the problem of how an artificial agent with no
prior ontological knowledge of its environment can generate
an emergent model of its environment, and acquire knowl-
edge about autonomous mobile entities (e.g. other agents),
particularly in a continuous environment.

This study relates to the domains of artificial constructivist
learning [1] and enactive learning [2], in which learning
occurs through the enaction of control loop implementing
Piagetian sensorimotor shemes [3], which we call interac-
tions. More precisely, this study uses a modeling hypothesis
called Radical Interactionism (RI) [4], in which an agent
starts with a predefined set of uninterpreted interactions.
These interactions are associated with in-born numerical
values, called valences, that define the agent’s drives without
relying on an external interpreter, states or predefined goal.
By experiencing its environment through interactions, an
RI agent constructs a model that it can exploit to generate
behaviors allowing to enact interactions with high valences.
Thus, unlike other approaches seeking optimal policies to
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accomplish specific tasks (e.g. Reinforcement Learning [5],
Deep RL [6], MARL [7]), RI focuses on the development
of agents capable of constructing a reliable model of their
environment from sensorimotor experience. Valences steer
decisions as an operating drive, but are not taken into
account in learning as a parameter to be optimized, thereby
dissociating the generated sensorimotor model from the
decision-making model. Thus, the study focuses more on
the reliability of the constructed model and predictions than
on efficiency in solving a predefined task.

As we study more complex environments, we face the
problem of dealing with other agents. In a multiagent per-
spective, the RI approach must be extended to collective, ad-
versarial or collaborative behaviors. Previous studies [8], [9]
demonstrated that an RI agent can integrate mobile entities
(reactive agents such as preys) into its model, detect them,
infer their behavioral preferences according to surrounding
static entities and finally predict their future moves. How-
ever, these studies were conducted in discrete environments,
limiting their applicability to real-world systems like robots.

Here we extend the agent’s abilities to integrate other mo-
bile entities in its internal model; specifically focusing on the
integration of such entities and their detection and localiza-
tion in a continuous space. The paper is organized as follows:
the rest of the introduction summarizes the RI formalism
devised from the literature on sensorimotor learning [10],
affordances [11], [12] and schema mechanisms [13]. Section
II presents the model for defining and recognizing mobile
entities and Section III presents the model for localizing
entities in space. Finally, Section IV encompasses conclusive
remarks and future developments.

Formally, an RI agent starts with a predefined set I of
interactions (control loops), each associated with an inborn
valence νi ∈ R. At the beginning of Step t, the agent selects
an intended interaction it ∈ I to try to enact. At the end of
Step t, it receives the actually enacted interaction et. The
enaction is a success if it = et and a failure otherwise.
An example failure may be when an agent intends to move
forward (it = move forward), but actually collides with
an obstacle (et = collide). Enacted interactions are the
only means for the agent to perceive its environment. It learns
to predict the result of future intended interactions in the
context of previously enacted interactions to select behaviors
enabling the enaction of interactions of high valence.

The Parallel RI (PRI) model [14] allows the simultaneous
enaction of multiple interactions. It distinguishes between
primary interactions defined by couples (action, outcome),
and secondary interactions defined by couples (interaction,



additional outcome). Additional outcomes result from move-
ments produced by an interaction. The optical flow is an
example of such outcome that must be associated with a
movement to characterize a position in space. At the end of
step t, the agent receives the set of enacted interactions Et ⊂
I containing the primary enacted interaction and several
secondary enacted interactions resulting from the primary.

The PRI model uses signatures of interactions to evaluate
the possibility to enact an interaction based on the previous
enacted context Et−1. The signature Si of interaction i thus
evaluates the presence of the affordance of i by defining
one or more sets of interactions {jk} whose enaction (i.e.
{jk} ⊂ Et−1) characterizes the possibilty of successfully
enact i at Step t. Formally, a signature of interaction is a
function Si : P(I) 7→ [−1; 1], (with P(I) the partition of
I , i.e. the set of all possible contexts). Si(Et) ∈ [−1; 1]
gives the prediction of successfully enacting i (1 for certainty
of success and -1 for certainty of failure). The signature’s
pseudo-reverse function Ŝi : {1,−1} 7→ P(P(I)) provides
either the minimal context(s) Ck

i ∈ I affording (Ŝi(1)) or
preventing (Ŝi(−1)) interaction i.

The signature of an interaction i designates sets of in-
teractions {jk} that can have their own signatures Sjk. By
using signatures Sjk of interactions jk that are related to
the same primary interaction j, it is possible to define a
context Sj

i that, after enacting j, will affords i. This process
is applied recursively through a sequence σ = ⟨j1, ..., jn⟩
of primary interactions to detect distant affordances through
“projected” signatures Sσ

i . This allows the emergence of an
implicit notion of space based on sequences of interactions
that extends in the extrapersonal space of the agent. Defining
affordances through interactions also overcomes limitations
of sensori-defined affordances (e.g. [15], [16]) that are lim-
ited to defining the next action or require additional spatial
information to make longer-term predictions [17].

II. INTEGRATION OF MOBILE AFFORDANCES

The main difficulty in integrating a mobile affordance is
that, even if the affordance is present, it can move during the
interaction’s enaction, leading to the failure of the interaction.
In [8], we proposed a model based on the observation that
a signature related to a mobile element defines prediction
certainties that are greater when the affordance is present
than when it is absent. The model thus prevents the signature
from updating after a failure when the predicted certainty
is above the average prediction value of failure (i.e. lower
absolute value), enabling the emergence of the signature.

Also, a mobile entity can afford an interaction from
multiple positions, depending on its movement’s direction,
and each movement may have a different probability. The
model defined a signature architecture (Fig. 1) based on a
layer of formal neurons, connected with a winner-takes-all
rule and a competition mechanism. In the case of a success
of i, only the neuron with the strongest output is reinforced
as a success, whereas all neurons are reinforced in case the
of failure. The competition mechanism forces each neuron
Nk

i to specialize on a unique context, noted Ck
i . To integrate
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Fig. 1. Implementation of signatures for the integration of mobile
affordances from [8]. Neurons are in competition, enabling the integration
of multiple positions from which a mobile object can afford the interaction.

“negative affordances” (i.e. the enaction is afforded by the
absence of elements), a second layer that has a neuron with
a single weight Wi allows to invert the first layer’s result,
and defines the signature output as Si(Et) = Ni(Et)×Wi.

The competition principle is that we take the strongest
weight wnmax

kmax
of the winner neuron that is connected to an

enacted interaction ikmax
∈ Et, and reset the weight cor-

respnding to ikmax of other neurons. This principle enables
the identification of independent contexts Ck

i and defines
their respective probability. However, in a continuous envi-
ronment, a mobile affordance can afford an interaction from
a continuous set of positions, potentially overlapping, making
a single neuron progressively takes all possible contexts.

A. A model of signature for continuous environment

We adapted the learning process and competition mech-
anism for continuous environments. The learning process
starts with a deactivated competition mechanism: all neurons
learn simultaneously. Failures of i with a prediction above
the average prevent weights’ update, allowing all neurons
to integrate all contexts affording i. While the signature
emerges, the certitude values of success increase. When the
signature Si predicts a success with a certitude above a
threshold, the competition mechanism is used, forcing the
distribution of contexts on neurons.

From our preliminary tests, the following competition
principle was retained for its stability. This principle is
applied after the neurons’ update. The winner neuron Ni,max

reduces the strength of weights related to non-enacted inter-
actions (ik /∈ Et), making it specialized in a context Ĉi of
co-occurring interactions, and leaving other possible contexts
to other neurons. The reduction of weights of the winner
neuron is of a constant δ1 weighted by the inverse of the
measured probability of success pi,s of its context (1) :

wt+1
k ← wt

k − sgn(wt
k).δ1.(1− pi,s) if ik /∈ Et (1)

where wk is a weight of the winner neuron associated with
an interaction ik ∈ I , and sgn a function giving the sign. The
winner neuron also slightly removes its context from other
neurons. For each neuron n ̸= nmax, positive weights wn,k

related to an enacted interaction (ik ∈ Et) that is related to
a positive weight of neuron nmax are reduced as (2):

wt+1
n,k ← wt

n,k−δ2.wk
nmax

if ik ∈ Et, wn,k > 0, wk
nmax

> 0
(2)



20%20% 20%

20%

20%

Fig. 2. The test environment. The grey shark (bottom left) is our agent. At
each simulation step, the fish (preys) can move randomly up, down, left, and
right or remain immobile. The bottom-left frame shows the visual system
of our agent. The pixel scale does not match the size of objects.

This second competition principle forces other neurons to
progressively abandon the observed context Ĉi,nmax

.

B. Test environment

This signature mechanism was tested on an artificial agent
moving in the 2-dimensional environment shown in Fig. 2.
Although the environment’s content is define as a matrix of
entities, the agent can move freely in it and quickly misaligns
with other elements.

The sensorimotor possibilities of the agent define the
following eight primary interactions: move forward , bump
in an obstacle , eat , slide on a soft object , turn right

and left by 90◦, turn right and left by 45◦.
This visual system discretizes space in front of the agent

as a regular grid of 37x21 positions (unknown to the agent)
and perceives 3 colors. The agent can see over algae and fish,
but not through walls. The distance between two adjacent
positions is 0.4 grid unit. This scale was selected so that
wall blocks are never aligned with the visual field’s grid. The
visual system can generate 37x21x3=2331 additional stimuli,
produced by the movement of a primary interaction (except
for bump that does not generate movement), for a total of
16317 secondary interactions.

We used signatures composed of 9 formal neurons. The
competition coefficients used in the presented experiments
are δ1 = 0.02 and δ2 = 0.1. The signature learning process is
driven by a learning mechanism that foster interactions with
low certainty of success or failure |Si(Et)|. Note that testing
an interactions leads to a simultaneous update of signatures
of interactions associated to the same primary interaction.

The environment is populated with three types of elements,
characterized by different colors to enable their identification
through the limited sensori system of the agent. Walls are
solid green squares of one unit affording bump. Preys and
algae are respectively blue elements affording eat and red

elements affording slide. Preys and algae have a round
’hitbox’ of radius 0.35 unit. the agent, represented as a gray
shark, has a round ’hitbox’ of radius 0.4 unit. The agent can
move through algae (enacting slide). When moving over a
fish (enacting eat), it is removed and another one is randomly
set in an empty position.

The fish move randomly to simulate agents with unknown
behavior: at each simulation step, they can stay immobile, or
move left, right, up, or down, with a probability of 20% each.
If the fish cannot move in the selected direction because of
the presence of another object, it remains immobile, making
the immobile situation slightly more probable than others.

C. Properties of Signatures of Interactions

During the learning process, we can observe all neurons
integrating the contexts affording their associated interaction.
Once a signature begins to provide high certainties more
frequently, the competition between neurons starts.

In the case of static affordances (i.e. bump and slide), one
of the neurons associates with the context corresponding
to the presence of a green (respectively red) element in
front of the agent, and inhibits other neurons. This neuron
stabilizes after less than 5000 simulation steps and define a
high probability (> 80%), in the same way than in discrete
environment [8]. However, the evolution of the signature
starts to differ after 20000 simulation steps: we can observe
the emergence of other contexts with lower probabilities,
designating the presence of an entity in a position just next to
the position in front of the agent. Indeed, as the visual system
of the agent has a low spatial resolution, these contexts refers
to a range of positions at the limit from where the element
can afford or not the interaction. Thus, in this case, the
probability reflects the proportion of positions affording the
interaction within the interval separating two adjacent visual
positions. We will refer to these contexts as ’limit contexts’
in the following descriptions. Fig. 3 and 4 show respectively
the signature of interactions bump and slide.

There are also major differences with signatures of mobile
affordances. As observed in discrete environment, the context
related to the presence of a fish in front of the agent is the
first to emerge and stabilize (after 8000 simulation steps)
in the signature of eat, as this context is the most probable.
The neuron integrating this context designates a set of visual
interactions related to seeing a blue element, in positions that
are in front of the agent, thus characterizing the position
from which the agent can enact eat when the fish remains
immobile. We can notice that the size of the ’blue blob’
(from an external point of view) is slightly larger than the
size of a fish, and the probability is higher than in the
discrete environment (around 35% instead of around 25%).
The reason is that there are positions partially overlapping
the position in front of the agent from where a movement
still leads to a success of eat. These positions are thus
captured as part of the ’front’ context, which also increases
its probability. Then, after 10000 simulation steps, other
neurons start to integrate contexts related to surrounding
positions. As the continuous environment offers a continuous
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Fig. 3. Signatures of interaction bump, recorded after 300 000 simulation
steps. A signature is characterized by the weights of 9 formal neurons. The
signature only identified five contexts, therefore we only represent 5 out
of the 9 neurons, each neuron being represented by a column. As external
observers, we can organize weights to make signatures more readable: first,
weights related to primary interactions are represented with eight squares
below (green for a positive weight, red for a negative weight). Weights
associated with secondary interaction are grouped according to their primary
interaction, forming the seven groups (from top to bottom: forward, eat,
slide, turn left 90◦, right 90◦, left 45◦, right 45◦; bump does not produce
visual interactions). Each group is organized to place visual interaction
with their associated position in the visual field. Colors are overlapped to
generate signatures under the form of an RGB image. On the first row
(weights related to secondary interactions associated with move forward),
the Signature identified a context that consists of seeing a green element
in front of the agent, with a high probability implying this affordance is
immobile, and a set of four other contexts that correspond to ambiguous
perceptions due to the low resolution of the visual system, leading to a lower
probability. The context from external point of view and defined probabilities
are represented on top. Other rows show similar structures, although they
take more time to emerge as the associated primary interactions are less
often enacted (especially eat and slide). Unreliable contexts are grayed.
bump is also related to the success of bump (green square on the bottom
line), since this interaction can be enacted repeatedly.

set of positions, the competition between neurons makes each
neuron trying to integrate a particular range of contexts. The
signature’s neurons stabilize on a stable distribution, with a
large set of positions in front of the agent, with a probability
around 35%, and a set of nearly equidistant sets of positions
around with probabilities depending of their distance from
the front position. Fig. 5 shows the signature of eat and the
probabilities of the discovered contexts.

Interaction move forward is afforded by the absence of
element in front of the agent. The signature’s weight W
(second layer’s neuron) quickly converges to −1 (less than
1000 simulation steps), which means that the neurons in-
tegrate contexts preventing this interaction. The signature
first integrates, in the first 5000 simulation steps, contexts
associated with the presence of a green, blue or red element
in front of the agent. Then, the contexts starts to split

81% 8% 14% 31% 8%

Fig. 4. Signatures of interaction slide, recorded after 300 000 simulation
steps. The signature only identified five contexts, therefore we only represent
5 out of the 9 neurons, each neuron being represented by a column. We
only represent the row of weights associated with secondary interactions
related to move forward. The signature identified a highly probable context
that consist of seeing a red element in front of the agent, and a set of four
less probable other contexts that correspond to ambiguous positions.
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Fig. 5. Signatures of interaction eat, recorded after 300 000 simulation
steps. All the 9 neurons are used by the signature. We only represent the row
of weights associated with secondary interactions related to move forward.
The signature identified multiple contexts, segmenting the possible positions
from which it is possible to interact with the mobile affordance, depending
on its movements, with the most probable contexts in front of the agent.

and spread on other neurons. It appears that 9 neurons are
not sufficient to integrate all possible contexts, including
the multiple contexts related to a fish and ’limit’ contexts
related to walls and algae: a same neuron can integrate more
than one context. We can however observe that a neuron
integrates contexts with similar probabilities, as an example,
two contexts related to the presence of a fish and a wall in
a peripheral position, which, if compared with signature of
eat and bump, both have a probability close to 15%. Due to
the competition mechanism, the signature needs more than
100000 simulation steps until finding a stable configuration.

The signature of visual interactions are also analyzed. The
signatures related to seeing a green or red element at a
specific position of the visual field correspond to seeing a
green or red object at a position that is consistent with the
movement produced by the associated primary interaction
(one step ahead for move forward, rotated of 90◦ left for a
left turn...). In the case of a green element, we also observe
contexts designating positions next to the main one with
low probabilities, that we do not observe for red-related
interactions. The reason is that walls often form lines in
the environment, making it possible to infer the presence
of a green element through its neighborhood. The signatures
of interactions related to seeing a blue element designate
multiple contexts with a most probable context at a position
consistent with the movement of the primary interaction, and
a set of other less probable positions surrounding it that
correspond to different possible movements of fish.

III. DETECTION OF DISTANT AFFORDANCES

The detection of distant affordances exploits two proper-
ties of signatures: first, a signature designates an affordance
as sets of interactions {jk} ⊂ Ŝi(1), and each interaction jk
may have its own signature. Then, signatures of secondary



90%46%16%37%98% 86%

16% 11% 15% 31% 14% 14% 14%

Fig. 6. Signatures of a sample of visual interactions, recorded after 300 000
simulation steps. We only display weights related to secondary interactions
associated with move forward of contexts considered as reliable. The visual
interactions are associated with a position shown with a yellow square in
the visual field. Top left: seeing green while moving forward. The signature
identifies a highly reliable other position matching the movement produced
by move forward (yellow arrow). Three other contexts designate green
elements around this position, due to the walls that often form lines. Top-
middle and top-right: interactions seeing red while moving forward and
seeing red while turning left by 90◦. A unique context is discovered at a
position matching the movement of move forward and turn left by 90◦.
Bottom: seeing blue while moving forward. A set of seven contexts is
discovered. The most probable one matches the movement of move forward
(the blue object does not move), while others, with lower probabilities, are
shifted positions (the blue object moves in the right direction to afford the
visual interaction). These examples show how signatures encode movements
of primary interactions.

interactions encode the movement produced by primary in-
teractions. These properties enable the recursive projection of
a signature Si through a sequence σ of primary interactions.
The projected signature, noted Sσ

i allows the detection of a
distant affordance instance of i at a position characterized
by the movement produced by the enaction of sequence σ.

In [8], we extended the projection mechanism to mo-
bile affordances by integrating the probability of individual
contexts. The interactions designated by a signature are
projected individually to define projection sequences, that
are triplets (σ, λ, p), where σ is the path sequence, λ is the
sequence of projected interactions, with λ[0] being the final
interaction of the projection sequence, and p the probability
of the sequence, obtained by recursively multiplying with
the probability of contexts. When two projection sequences
have the same final interaction λ[0], they are merged if
they have the same path σ and start from the same context
Ck

i , otherwise the sequence with the lowest probability p is
removed. This filter ensures that there is only one projection
sequence for each path σ and context Ck

i leading to an
interaction j (λ[0]). The consequence is that the presence of
a mobile affordance in the surrounding space will trigger a
set of projection sequences with the same λ[0], each starting
from a different context Ck

i and whose path sequences
indicate the possible next positions of the affordance [9].

In a continuous environment, a signature Si designates
contexts composed of multiple interactions jk, some of
them characterizing the ’edge’ of the element affording i.
Some projection sequences thus project through a sequence
λ of interactions characterizing such ’edges’, producing
a projected signature designating an affordance with an
overestimated size. If these projected sequences start from
a context Ck

i with a high probability, they can replace more
pertinent sequences (i.e. characterizing a position centered
on the affordance) but with lower probabilities. As observed
in signatures, the center of an affordance recognized by a
context Ck

i is designated by interactions with the highest

weights. We thus propose to integrate the weights’ strengths
into the projections process. The strength of a weight wk

m in
a context Ck

i indicates how much the presence or absence
of the associated interaction jm in Et affects the result
of Ck

i (Et). We propose to add to projection sequences a
normalized value ωk

m = wk
m/|wk

max|, where wk
max is the

weight with the greatest absolute value in Ck
i .

The modified process to generate projection sequences
is defined as follows: a projection sequence is a tuple
(σ, λ, p, ω). The projection starts with a context Ck

i of a
signature Si that is decomposed into projection sequences
(σ0, λ0, p0, ω0), where σ0 = ⟨ ⟩ is an empty sequence,
λ0 = ⟨jm⟩, with jm an interaction of Ĉk

i (1), p0 the
probability of context Ck

i and ω0 = wk/|wmax|, with wk the
weight connected to jk. The recursive projection through a
primary interaction j allows the generation, from a projection
sequence (σ, λ, p, ω), a set of sequences (⟨j, σ⟩, ⟨jm, λ⟩, p×
pm, ω×ωm), where jm is an interaction of a context Ĉl

λ[0](1)
associated with primary interaction j, pm the probability of
this context and ωm the normalized weight value of jm in
this context. Thus, the normalized value ω of a projection
value characterizes how much the projected interaction λ[0]
characterizes a position that is ”closed” from the distant
affordance’s center.

The sequence filter integrates this value: when two projec-
tion sequences lead to the same final interaction λ[0] through
the same path σ, but come from different contexts Ck

i , we
only keep the sequence with the greatest term p × ω. The
selection is thus a compromise between the probability and
the pertinence, i.e. the proximity to the affordance center.

Then, when the final interaction λ[0] of a projection
sequence is in Et, a candidate affordance instance of i is
detected at position σ. In a continuous environment, the same
entity can be detected through multiple enacted interactions,
as shown in Fig. 2. We thus propose to detect and gather
sequences locating the same affordance instance of an in-
teraction i. First, the detection mechanism gathers detected
projection sequences that have the same final interaction λ[0].
An affordance instance Ai is thus characterized by a set Ξ of
sequences σk and a final interaction j = λ[0]. Then, when
two instances have a sufficient number of path sequences
in common, i.e. Ai,1, Ai,2 \ Card(Ξ1 ∩ Ξ2) ̸= ∅, these
instances are merged. At this point, an affordance instance
is defined as a data structure containing a set Ξ of sequences
of interactions leading to it and a set {jk} of interactions
characterizing it from the agent’s point of view.

It is then possible to extract information from these data
structures and filter sets Ξ: if the set contains at least one
sequence projected from a context Ck

i with a high probability
(we use a threshold of 80%), then the affordance instance can
be considered as a static element. Therefore, sequences pro-
jected from less probable contexts, such as ”limit” contexts
observed in signatures of bump and slide, can be removed,
leading to a more accurate localization of the affordance
instance. Otherwise, the affordance instance is considered as
a mobile affordance. The position of static affordances can be
deduced by the length and the first interaction of the shortest
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Fig. 7. Detection of distant affordance instances in the configuration
shown in the top-left insert. The top right insert shows the visual outcome
after enacting move forward (the vector of visual outcomes is organized to
match positions and colors in the visual field for better readability). Bottom:
the affordance view (observer’s point of view). Each circle represents the
position and orientation that can be reached by enacting a sequence σ
of a detected affordance instance. Circles thus show the position from
which the interaction should be enacted (i.e. in front of the entity). The
detection mechanism identified and segmented 6 affordance instances. The
two instances of bump and the two instances of slide are identified by
sequences projected from high probability contexts, allowing to define them
as static affordances. They are localized with sets of sequences defining a
dense set of positions in front of the entities that form the affordances (walls
and algae). From these sequences, the detection mechanism can extract
the direction and distance from shortest sequences: the first interactions
of shortest sequences define the ’orientation’, and the length of shortest
sequences, the ’distance’ (including turns interactions). These data structures
can be stored in subsequent mechanism [9] to define a allocentric reference.
The two instances of eat are recognized as mobile affordances, and localized
with a set of sequences leading to a sparse set of positions, which indicate
possible next positions of the affordance. Integrating the affordance context
as a set of sequences of interactions makes it possible to use subsequent
mechanisms developed in discrete environment for behavioral preference
inference and movement predictions.

sequences of the set Ξ, characterizing the distance and
direction in egocentric reference, while sequences leading
to a mobile affordance characterize the set of possible next
positions. Fig. 7 shows a distant affordance detection in an
example of environment configuration.

The fact that affordance instances are characterized by data
structures consisting of sequences of interactions produces
a form of discretization of the continuous environment
context. Moreover, these generated data structures are the
same as those used and exploited in the discrete environ-
ment mechanisms [9] to store static affordances, detect and
measure the movements of mobile affordances through the
allocentric context of static affordances, infer their behavioral
preferences and predict their future movements.

IV. CONCLUSION

This work presents an adaptation of our model to contin-
uous environment, allowing an artificial agent with no prior
knowledge to construct an exploitable model of an environ-
ment containing agents with unknown decision mechanisms.
We focus here on the mechanisms enabling the integration
of mobile entities and their localization in the surrounding
environment. This work shows that adapting the model to
constraints of a continuous environment does not require

major changes to the model. However, we can observe
interesting additional data from the generated structures,
illustrating how signatures of interaction can integrate prop-
erties of the environment that can be exploited by subsequent
mechanisms. The generated data structures used to localize
distant affordance instances are similar to those generated by
the discrete version of the model, suggesting that subsequent
mechanisms for inferring and predicting the behavior of
mobile entities can be adapted with minor changes.

Our tests also showed the importance of dynamically
adapting the number of contexts, i.e. the number of neurons
in signatures, a problem that we will investigate. Our future
work will also study the complete prediction mechanism,
and the emergence of collaborative/competitive behaviors,
opening intersubjectivity possibilities between agents in real-
world systems.
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