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Abstract

We propose an architecture for self-motivated agents allowing them to construct their own knowledge of objects and of geometrical properties
of space through interaction with their environment. Self-motivation is defined here as a tendency to experiment and to respond to behavioral
opportunities afforded by the environment. Interactions have predefined valences that specify inborn behavioral preferences. The long-term goal
is to design agents that construct their own knowledge of their environment through experience, rather than exploiting pre-coded knowledge.
Over time, the agent learns relations between elements of the environment that afford its interactions, and its perception of these elements, in
the form of data structures called signatures of interactions. These signatures allow the agent to attribute a low level semantics to elements that
constitute its environment based on valences of interactions, without predefined knowledge about these elements and regardless of the number
of element types. Signatures of interaction are then used to localize elements in space and to construct data structures that characterize spatial
properties of space, called signatures of places and signatures of presence. Signatures of place and of presence characterize space using interactions
rather than geometrical or topological properties. The agent uses these structures to maintain an egocentric representation of affordances of the
surrounding environment, without any preconception about the elements that compose the environment, and without using notions of geometrical
space. Experiments with simulated agents show that they learn to behave in their environment, taking into account multiple surrounding objects,
reaching or avoiding objects according to the valence of the interactions that they afford.
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1. Introduction

We propose a mechanism that allows an artificial agent to
construct, interpret, and exploit a short-term memory of its
surrounding environment, without using ontological precon-
ception about its environment or its sensorimotor possibilities.
The agent’s purpose is to generate behaviors that satisfy its
self-motivational principles. Such an agent can be defined as
environment-agnostic (Georgeon & Sakellariou, 2012).

Utilization of a spatial memory must allow the agent to inte-
grate the surrounding elements of its environment. In particu-
lar, the spatial memory must memorize elements that slip out of
range of the agent’s sensory system so the agent can keep track
of them. It must also help the agent to discover spatial proper-
ties of its environment, by capturing spatial regularities offered
by the environment. The spatial memory must thus construct
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a complete context that characterizes the agent’s environment.
The construction of such a spatial memory relates to the prob-
lem of space integration, which is faced by living beings as well
as artificial agents.

We base our work on a design principle introduced by Geor-
geon & Aha (2013), called Radical Interactionism (RI). RI in-
tends to account for cognitive theories that suggest that sensori-
motor patterns of interaction are the primary bricks of cognition
(e.g. Piaget (1954)). In the RI formalism, the agent is given a
predefined set of actionsA that the agent can perform in the en-
vironment, and a predefined set of results R that the agent gets
from the environment as the result of an action. The agent’s
input data is called result rather than observation or perception
because it does represent the state of the environment. In a
given state of the environment, the agent may get a different re-
sult rt ∈ R depending on the action at ∈ A. On the contrary, if
we used the terms observation or perception, the reader would
expect that the agent’s input data would depend on the state of
the environment only. The terms observation and perception
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are used in many articles to mean exactly that. By using the
term result, we wish to highlight this crucial difference from
these articles.

The RI formalism defines an interaction i as a couple made
of an action and a result: i = 〈a, r〉 / a ∈ A, r ∈ R, i ∈ I, where
I is the set of interactions, I = A × R. Interactions represent
Piagetians sensorimotor schemes and are the core elements of
the RI model. An RI agent uses interactions as atomic elements.

The RI formalism defines the valence function ν : I −→ R
that associates a numerical valence with each interaction. We
develop agents that seek to perform interactions that have a pos-
itive valence and to avoid performing interactions that have a
negative valence. This motivational principle is called inter-
actional motivation (Georgeon, Marshall, & Gay, 2012), and
is related to the problem of intrinsic motivation (Oudeyer, Ka-
plan, & Hafner, 2007). The agent perceives its environment by
identifying affordances in the environment rather than by rec-
ognizing objects on the basis of predefined features. This ap-
proach addresses the knowledge-grounding problem (Harnad,
1990) by letting knowledge of objects and spatial properties
arise from experience of interaction, introducing no disconti-
nuity between the agent’s experience and the representation of
objects and space.

1.1. How to integrate space management in an autonomous
agent according to the RI paradigm?

Georgeon & Ritter (2011) have developed a sequential RI
algorithm that allows an agent to autonomously capture and ex-
ploit sequential regularities of interaction offered by the cou-
pling between the agent and the environment. This algorithm
constructs hierarchical sequences of interactions that represent
these regularities, starting from short sequences, and build-
ing increasingly longer sequences of sequences in a bottom-up
fashion. However, this kind of agents had troubles organizing
their behaviors in space and did not detect the persistence of
objects. As an example, the agent could not detect that turn-
ing 90◦ left three times is equivalent to turning 90◦ right once.
Moreover, the agent ceased to pursue objects when they slipped
out of range of the agent’s sensory system, even if the objects
were just behind the agent.

To overcome these limitations, the challenge is to develop a
mechanism that allows an artificial agent to construct, maintain
and exploit a short-term internal model of the environmental
context. Moreover, a second challenge is to be able to cope with
objects that compose this environment in terms of interactions.
All of this has to be obtained by and for generating behaviors
that satisfy the agent’s motivational principles.

In this context, we do not try to develop a path planning
mechanism, neither are we designing a mapping algorithm. In-
stead, we decided to consider mechanisms inspired by simple
living beings as a good starting point to take up these chal-
lenges.

1.2. Inspiration from biology
Learning to integrate and maintain a representation of the

surrounding environment, and memorizing the position of el-
ements present the environment, are vital abilities for many

living beings, that help them to avoid dangerous areas or to
move toward interesting objects. Considering artificial agents,
such abilities help them to construct an internal model without
pre-conceptions about the agent’s sensorimotor properties. We
drew inspiration from vertebrates, for which space is integrated
in several brain areas, such as tectum (Northmore, 2011) (or
colliculus in mammals), sensorimotor cortices (Graziano, Tay-
lor, & Moore, 2002), or hippocampus (O’Keefe & Dostrovsky,
1971). These areas maintain a certain correspondence with spa-
tial positions (Cotterill, 2001). Previc (1998) proposes a model
of space divided into four areas. Each area handles an area of
the surrounding space with a predefined purpose: the periper-
sonal space, that consists of the space the agent can directly
reach; the action extrapersonal space, that consists of the space
the agent can reach through movements in space; the focal ex-
trapersonal space, which is the area around the point observed
by the visual system (in living beings equipped with a fovea);
and the ambient extrapersonal space, which takes into account
the far environment, used as a reference for orientation in space.

We limit the work presented in this paper to the peripersonal
and the extra-personal spaces. We believe that these two areas
are necessary for rudimentary living beings to survive. Indeed,
vision and space management of fish and reptiles is mainly
based on the optic tectum and may not have very advanced brain
structures related to space management, such as sensorimotor
cortices and hippocampus, and few species have a fovea.

The peripersonal space can be considered as the space in
which an agent can interact directly or after a short movement
that can be considered as a part of the interaction. The ex-
trapersonal space can be considered as the region of space (in
egocentric reference) with which an agent can interact after a
movement, limited to the region of space that the space memory
can integrate. The extrapersonal space incorporates the periper-
sonal space. We can thus study the extrapersonal space with-
out a peripersonal space integration mechanism. In a previous
work, we proposed a mechanism that integrates peripersonal
space (Gay & Georgeon, 2013). In this paper, we focus on
mechanisms that integrate the extrapersonal space.

1.3. A spatial agnostic agent: which principles should be re-
spected?

We have to define the set of principles we consider neces-
sary for an environmentally agnostic agent to exhibit spatial be-
haviors that are adapted to an initially unknown environment.
Exhibited behaviors have to respect five main principles:

Principle 1 (P1): the agent must be intrinsically motivated
to ensure that its motivation principles do not rely on a direct
access to environment properties or on any external influence.

Principle 2 (P2): the agent must consider objects that com-
pose its environment by itself, based on its sensorimotor possi-
bilities, rather than using a predefined set of object descriptors.

Principle 3 (P3): the agent must be able to integrate its sur-
rounding environment in a form it can exploit. This property
implies that the agent must be able to discover and integrate
spatial properties of its environment and recognize previously
defined objects in its environment.
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Principle 4 (P4): the agent must be able to consider the per-
manence of objects, i.e. the agent must learn to build its mem-
ory in such a way that it can track object positions even when it
cannot interact with them anymore.

Principle 5 (P5): the agent must exploit the structures it con-
structs and its internal model of its environment to generate be-
haviors that satisfy its motivational principles.

This paper is divided in three parts: the first part gives a state
of the art of the problem of space integration and generation
of behavior based on experience, and summarizes our previous
work (Section 2). The second part details the mechanisms we
propose to allow an artificial agent to integrate its surround-
ing environment without preconception about the environment
(Sections 3 and 4). We use the agent employed in our exper-
iments to illustrate principles and mechanisms of our system.
The third part presents the experiments we provided to test our
mechanisms (Section 5).

2. State of the art

The five principles, as defined in the previous section, are
well studied in the literature. However, these properties were
studied separately. The sensorimotor approach requires that
these principles must be respected simultaneously to generate
behaviors based on a complete sensorimotor loop.

The following state of the art lists representative works that
exhibit the right properties to respect one or more principles.
The different contributions are presented with corresponding
studied principles (in parentheses).

2.1. Building knowledge from experience

Theories of cognition (e.g. Piaget (1954), O’Regan (2011))
assume that the knowledge of our world arises from our inter-
action with this world. We consider this property to be funda-
mental as it ensures that an agent experiences its environment
through its possibilities of interaction rather than accessing dif-
ferent states of the environment, which would be completely
independent from it. This section lists relevant works in the do-
main of the developmental approach for artificial intelligence
(Developmental AI in short) and the emergence of the notion of
object based on interactional experience with the environment.

2.1.1. Decisional learning mechanisms in Developmental AI
Oudeyer, Kaplan, & Hafner (2007) proposed a developmen-

tal learning mechanism that generates a preference for actions
allowing fastest learning progress (P1). This approach helps to
define priorities in the learning process. This approach respects
the principle of environmental agnosticism, as the agent has no
a priori information on its interactions and its environment, and
generates behaviors that satisfy its curiosity principle based on
information acquired through its interaction with its environ-
ment (P5). However, this mechanism cannot integrate spatial
properties of the environment and elements that compose it, and
cannot generate spatial behaviors.

Nguyen et al. (2013), and Ivaldi et al. (2014) proposed a
curiosity mechanism that leads a robot to learn to recognize

objects by manipulating them and observing their properties.
These approaches focus on learning new knowledge and allow
generation of behaviors based on a form of intrinsic motivation
(P1). They are however limited to learning mechanisms based
on a form of curiosity that leads an artificial agent to discover
behaviors but cannot exploit them.

Blank, Kumar, Meeden, & Marshall (2005) defined a hier-
archical learning mechanism where each level defines an ab-
straction of lower level information and learns to predict this
information. The learning mechanism tries to reach environ-
ment states where information is predictable and allows fast
learning. This approach autonomously generates and exploits
hierarchic behaviors (P5), but is based on environment states,
which infringes the principle of environmental agnosticism.

2.1.2. Object discovering and exploitation through interactions
Autonomous construction of objects is an important princi-

ple in our mechanisms. Indeed, such an ability makes the agent
independent from its environment, as there is no need to de-
fine a priori the elements that compose the environment. This
ability also allows the agent to give a meaning to elements of
the environment, according to the possibilities of interactions
afforded by these elements.

Maye & Engel (2011) proposed that a robot can learn to cate-
gorize and recognize objects through sequences of interactions
afforded by these objects (P1). The agent thus generates inter-
nal object models based on its abilities to detect and interact
with them (P2). This principle can however only discover and
learn sequential properties of the environment and elements that
compose it, and cannot be used to integrate spatial properties of
the environment.

Hermans, Rehg, & Bobick (2011) defined a mechanism in
which a robot learns to predict properties of objects according
to their visual properties (such as color, texture, shape and size).
Defining properties of objects according to their visual proper-
ties allows these objects to be defined in terms of interactional
properties (P2). However, the elements are automatically cen-
tered in the camera image, which implies predefined precondi-
tions about elements of the environment.

Cos-Aguilera, Cañamero, & Hayes (2004) used a Self Orga-
nizing Map (SOM) to consider object classes. The utilization
of a SOM enables the agent to define objects without knowing
a priori the number of element types in the environment (P2).
The agent moves randomly in its environment: this mechanism
cannot detect spatial regularities and cannot generate spatial be-
haviors.

Griffith, Sukhoy, Wegter, & Stoytchev (2012) proposed an
approach in which a robot learns to use acoustic properties of
objects and proprioceptive stimuli of arms while manipulating
these objects under a sink (P2). Griffith, Sinapov, Sukhoy, &
Stoytchev (2012) proposed a similar approach where the robot
learns to separate containers from non-containers by manipulat-
ing them (P2). These approaches are based on the segmentation
of objects according to proposed affordance, but cannot be used
to generate behaviors.

Pfeifer & Scheier (1994) proposed a mechanism in which a
robot learns to recognize and generate implicit object models
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that can be lifted and pushed, and obstacles, according to its
sensors. The generated implicit models depend of the gripper
size of the robot, and its experience of its environment (P1, P2).
However, this mechanism cannot recognize distant objects or
integrate the surrounding environment.

Montesano & Lopes (2009) proposed a model that allows
a robot to determine if an object can be grasped according to
visual properties (P2). Although this model cannot generate
behaviors, the emergent knowledge can be directly used by the
agent.

Uğur, Doğar, Çakmak, & Şahin (2007) proposed a mecha-
nism in which a simulated or physical robot learns to define rel-
evant information in its perception that allows the result of its
actions (a set of trajectories) to be predicted (P1). This mech-
anism allows the robot to navigate in a cluttered environment
by avoiding or pushing obstacles (depending on their shapes)
(P5). The agent constructs implicit models of elements (P2),
but they cannot be used to recognize distant objects or integrate
the surrounding environment.

Baleia, Santana, & Barata (2014) proposed a similar ap-
proach, but added an arm used by the robot to probe the en-
vironment in front of the robot, when the properties of the en-
vironment cannot be defined with a sufficient certitude, imple-
menting a form of active perception (P1, P2, P5). However, as
described above, this approach cannot integrate the surrounding
environment.

These works study the problem of discovering and exploit-
ing objects of the environment by an autonomous and artificial
agent. However, the structures learned during object discover-
ing cannot be used to discover and integrate spatial properties
of the environment, which dramatically limits the ability to ex-
ploit these structures to generate spatial behaviors.

2.2. Space integration

Integrating surrounding space is necessary when an agent
needs to localize an element of the environment in order to
reach or avoid it. It is even more necessary to keep track of
elements when they cannot be observed directly through inter-
actions anymore. Integrating space thus consists in constructing
a structure that can track elements in an exploitable way. The
memory process has to be able to update this structure to follow
the considered elements.

2.2.1. Peripersonal space
The peripersonal space consists of the close surrounding en-

vironment with which the agent can directly interact. Integrat-
ing this space helps the agent to define possible actions in its
current context.

Detry et al. (2009) proposed an approach in which a robotic
arm computes positions from where an object can be grasped,
which allows the robot to grasp an object without any ontologi-
cal preconception about this object (P2, P3). Gripper positions
are however computed according to a predefined model of the
arm.

Pierce & Kuipers (1997) proposed to construct the topologi-
cal structure defined by an initially uninterpreted set of sensors,

using similarities between sensor values (P1). This mechanism
allows an agent to construct a map of its immediate surrounding
environment, and define movements associated with its actions
(P2, P3 (limited to close space)). The agent then uses this model
to navigate in its environment, but the model is limited to close
space (P5).

Fuke, Ogino, & Asada (2007, 2009), and Chinellato, An-
tonelli, Grzyb, & del Pobil (2010) proposed models that gen-
erate implicit links between positions in the visual space and
positions that a robotic arm can reach, and localize tactile stim-
uli in space (P3). These models are not based on a Cartesian
reference, but on an interactional reference (P1). This model is
however limited to visual and reachable space and cannot gen-
erate behavior.

2.2.2. Extrapersonal space
Extrapersonal space is the area of the surrounding space in

which an agent has to move before being able to interact with
interesting elements. Integrating the extrapersonal space im-
plies recognizing distant affordances, and being able to behave
in order to reach them.

Kawamura, Koku, Wilkes, Peters, & Sekmen (2002) pro-
posed a navigation mechanism based on an ego-sphere. The
ego-sphere consists in projecting points of interest of the envi-
ronment on a sphere centered on the agent. Points of interest are
thus considered by their polar coordinates on the sphere. The
agent can then navigate in its environment by comparing sets
of points of interest (P3, P5). However, this mechanism does
not take distance into consideration and thus does not provide a
way to localize the points of interest in space. There is thus no
possibility to determine how to reach them.

Lagoudakis & Maida (1999) proposed a mechanism named
polar neural map to allow an agent to navigate toward a place,
while avoiding obstacles in the surrounding environment. This
map considers the surrounding elements in a polar representa-
tion and the orientation of the place to reach (P3, P5). However,
this mechanism is based on predefined movements in space, and
needs a predefined place as a goal to guide the agent.

These works study the problem of learning and exploiting a
structure that represents spatial properties of the environment.
Learning a structure that characterizes the peripersonal space
is well studied in literature, but only a few works study the
problem of integrating extrapersonal space. In the presented
works, extra-personal space representation is based on a prede-
fined structure that cannot provide information about the dis-
tance of elements in the environment. Moreover, these works
do not rely on autonomously learned structures to represent el-
ements of the environment, such as works presented in Sec-
tion 2.1. Using learned structures to build a structure that char-
acterizes peri and extrapersonal space is however required for
an agnostic agent to generate behaviors adapted to its environ-
mental context.

2.3. Sensorimotor contingencies learning
The model proposed by Uğur, Doğar, Çakmak, & Şahin

(2007) is very close to our interaction signature mechanism (de-
scribed in Section 4.1). These authors propose to determine
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the possibilities of actions (a set of forward movements ranged
from turn-sharp-right to turn-sharp-left) according to visual in-
formation. The agent learns to extract relevant visual informa-
tion that can be used to determine when an action is possible,
both because there is no object on the agent’s path and because
the object can be pushed. The agent can then navigate in a clut-
tered environment while avoiding or pushing obstacles without
any preconception about the environment and the objects com-
posing it. However, this mechanism cannot be used to integrate
extrapersonal space: as the agent uses perceptions to define the
traversability of the environment, it cannot exploit the learned
structures to discover the spatial properties of its environment,
or take distant elements into consideration.

2.4. Previous studies based on Radical Interactionism and spa-
tial learning

Georgeon, Marshall, & Manzotti (2013) associated an RI
mechanism with a spatial memory within a cognitive archi-
tecture called the Enactive Cognitive Architecture (ECA). The
agent was provided with the coordinates of the enacted interac-
tions in an egocentric referential. Knowing the spatial position
of enacted interactions, the agent could detect when they over-
lapped. From spatial overlaps of enacted interactions, the agent
could infer the presence of objects in the surrounding space
that afforded these interactions. The agent learned to repre-
sent categories of objects by the set of interactions that they
afforded. This model required the strong assumption that the
agent received information about the position of enacted inter-
action. The present study aims at removing this assumption.
Another limitation of this model was that it was unable to deal
with objects that could be changed by the agent (e.g. a preys
that disappear after being eaten). The present study also seeks
to overcome this limitation.

3. The Radical Interactionism (RI) Approach

The Radical Interactionism (RI) model (Georgeon & Aha,
2013) considers the exchanges between an agent and its envi-
ronment in the form of sensorimotor schemes called interac-
tions, rather than separated actions and perceptions. The RI
model does not require the notion of environment states or ex-
trinsic reward, which is compliant with the principle of envi-
ronmental agnosticism. The agent thus actively discovers its
environment through successive interactions with the environ-
ment, and constructs its perception as an internal model based
on interactions.

Considering interactions rather than separated actions and
perceptions has the advantage of considering both the possi-
bilities of interactions provided by the environment, related to
initially unknown objects, and the initially unknown movement
produced by an interaction. Indeed, an action or a perception
alone cannot provide information about the agents movement
because an action can fail and a perception can be observed as
a consequence of several actions. Using interactions thus helps
to define movements of the agent and to construct a structure to
characterize a spatial environmental context.

3.1. Formalization of the RI model

The RI interaction cycle begins with the agent selecting and
trying to enact an intended interaction it ∈ I (as defined in Sec-
tion 1). Enacting interaction i = 〈a, r〉 consists of performing
action a (through activating actuators), and receiving result r
(through sensors). The process of enaction of i is programmed
by the designer of the agent but is ignored by the agent. At the
end of the interaction cycle, the agent gets the enacted interac-
tion et that was actually enacted. Figure 1 shows this enaction
cycle, from the agent’s point of view. The enaction of it is a suc-
cess if et = it , and a failure otherwise. In a given state of the
environment, the enacted interaction depends on the intended
interaction. Therefore, the agents input data (the enacted inter-
action) does not represent the state of the environment, and thus
does not constitute the agents perception. Instead, perception is
an internal construction maintained by the agent according to
its experience interacting with the environment. The agent se-
lects next intended interaction during the next enaction cycle
according to this internal construction.

et i t

Environment

AgentAgent

r (ut , yt)

ts

t+1s

rt+1

ν( y t | t)s

MDP    Environment states Σ

q ( | , ut+1 t t )s s

ut
yt

Figure 1. Comparison between POMDP (left) and RI (right). The RI cycle
begins with an intended interaction it selected by the agent, as opposed to the
POMDP cycle, which begins with the agent receiving an observation yt . This
inversion of the interaction cycle is materialized in the figure by the black circle
(beginning) and the black arrowhead (end). The RI model does not refer to the
notion of environmental states: for the agent, the environment is opaque and
can only be accessed by experiencing it through interactions. The agent’s moti-
vation is intrinsic: the agent experiences the satisfaction from the enaction of an
interaction rather than from an external reward based on some environmental
state.

The valence function ν (introduction in Section 1) defines
the agents behavioral preferences, without using an extrinsic
reward. An RI agent learns to anticipate the results of its inter-
actions, tries to enact interactions with high valences, and tries
to avoid enacting interactions with negative valence. As a re-
sult, to an external observer, the agent seems to like enacting
interactions that have a positive valence and to dislike enacting
interactions that have a negative valence.

The RI model differs from standard reinforcement learning
approaches (e.g. POMDP, Åström (1965)) in that it does not
aim at maximizing a reward value. Rather, the agent learns be-
haviors that satisfy the interactional motivation principle. The
RI model does not use rewards defined as a function of the en-
vironmental state; it uses valences associated with enacted in-
teractions. Moreover, the RI model does not refer to the envi-
ronment states: for the agent, the environment is opaque and
can only be accessed by experiencing it through interaction,
which satisfies the principle of environmental agnosticism. A
RI agent is evaluated through its behavior and through the struc-
tures that it learns, according to a set of criteria (Georgeon &
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Sakellariou, 2012) inspired by the developmental robotics do-
main (Lungarella, Metta, Pfeifer, & Sandini (2003), Weng et al.
(2001)).

3.2. Formalization of the Parallel RI model

To overcome the limitations of the RI model presented in
Sections 1.1 and 2.4, this paper proposes an extension of the RI
model, called Parallel Radical Interactionism (PRI). The PRI
is similar to the RI in principle, but differs in that it allows
the agent to simultaneously experience several enacted interac-
tions. The intuition comes from living beings that feel multiple
sensory stimuli while interacting with their environment. For
example, an animal can move forward, and simultaneously ex-
perience the optical flow and the Doppler effect that result from
this movement. We thus propose that the agent can get addi-
tional results, in addition to the result that belongs to the en-
acted interaction. In the PRI model, we distinguish between two
kinds of results: primary results r ∈ R′ and secondary results
r′′ ∈ R′′, with the set of all results R = R′ ∪ R′′ However, sec-
ondary results cannot be considered without the movement pro-
duced by the enacted interaction. As an example, the optic flow
on the retina can only convey spatial information if it is consid-
ered with the movement that generates it. We also cannot con-
struct new interactions by associating the result with the action
that composes the enacted interaction, because an action is not
sufficient to characterize the movement of the agent. This led
us to distinguish between primary interactions and secondary
interactions: A primary interaction i′ = 〈a, r〉 ∈ I′ = E × R′

is the association of an action with a primary result. Primary
interactions of the PRI model are similar to interactions of the
RI model. A secondary interaction i′′ = 〈i, r′′〉 ∈ I′′ = I′ × R′′

is the association of a primary interaction with a secondary re-
sult. Secondary interactions are specific to the PRI model. They
are meant to convey additional results appended to the primary
interaction i′.

At enaction cycle t, the agent selects and tries to enact an
intended primary or secondary interaction it ∈ I = I′ ∪ I′′. The
difference with the RI model is that, at the end of the enaction
cycle t, the agent experiences a set of enacted interactions Et =

{ek}t (Figure 2). The set of enacted interactions Et contains one
primary interaction only plus a set (possibly empty) of enacted
secondary interactions associated with this primary interaction.
It constitutes a representation of the current context as the agent
experiences it through interactions; we thus call the set Et the
interactional context.

The PRI model keeps track of the success or failure of enac-
tions in a more extended way than the RI model. In the case of
a primary interaction, an interaction i is marked as successfully
enacted at enaction cycle t when i ∈ Et, whether it was intended
or not. A primary interaction i is marked as failed when i is in-
tended but not enacted (i.e. i = it ∧ i < Et). This means that
another interaction j , i is enacted instead of i. If an interaction
j can be enacted instead of an interaction i, and i and j are never
enacted simultaneously, we can consider that j is an alternative
of i. We define that two interactions i and j are opposite if i and
j are mutually alternatives. As a consequence, if an opposite

Environment

E ={e }t it

Agent

tk

Figure 2. Diagram of the Parallel Radical Interactionism model (adapted from
the RI model). At enaction cycle t, the agent tries to enact an intended inter-
action it , and gets a set of enacted interactions Et = {ek}t , that constitutes the
interactional context experienced by the agent.

interaction j of i is enacted (i.e. j ∈ Et), then the interaction i is
marked as failed, even if it was not intended.

All the secondary enacted interaction (elements of Et∩ I) are
marked as successfully enacted on time t. All the secondary in-
teractions that do not belong to Et but whose associated primary
interaction belongs to Et are marked as failed on time t.

3.3. Implementation of the PRI model in an artificial agent

Based on the PRI model, we designed an artificial agent that
moves in a 2-dimensional environment. This environment con-
tains several objects that afford several possibilities of interac-
tion to the agent. The agent has five possible actions: move
forward of its length, turn left of 90◦ , turn right of 90◦ , turn
left of 45◦ , and turn right of 45◦ . The agent’s sensory sys-
tem generates the primary results of these actions. The move
forward action can yield three results: 1) successfully moving
forward, 2) bumping into a solid object, and 3) moving forward
and eating something edible. The turn actions can yield only
one primary result: successfully turning. The set of primary
interactions I′ thus contains the 7 interactions listed in Table 1:
successfully moving forward, bumping, eating, turning left of
90◦, turning right of 90◦, turning left of 45◦, turning right of
45◦. We set the valence of these interactions such that the agent
slightly likes moving forward, dislikes bumping, and strongly
likes eating. The interactions moving forward, bumping, and
eating are opposite to each other, because a failure of one pro-
duces the enaction of the other.

Table 1. List of the seven primary interactions used by the agent. The valence
of each interaction is given in brackets.

move forward of one step (5)
bump in a solid element (-10)
move forward and eat something edible (50)
turn 90◦ left (-3)
turn 90◦ right (-3)

turn 45◦ left (-3)
turn 45◦ right (-3)

Additionally, the agent is equipped with a visual system that
detects objects in a 180◦ visual field based on their color c
(among {red, green, blue}), and provides information about the
optic flow (θ, v). θ is the angle on the retina, and v is the mea-
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Context representation for an external observer

The secondary results generated by the enaction of
the Move forward interaction can be represented 

by colored squares in a 2D top view. Note,
however, that the agent ignores the spatial

organization of these secondary results.

The current context is made of the six primary
interaction that can generate secondary visual 

results and the knowledge of which
interaction was enacted

Top view of the environment

While the agent is enacting an interaction,
its visual system measures the colored

optic flow at various angles.

From the successfully enacted interaction
and visual information, the agent build

its interactional context E  .t

Move forward (    ) has been successfuly enacted

secondary
interactions

Figure 3. The environment of the agent and a representation of the interactional context for an external observer. Top left: the agent (represented as a gray shark) in
its environment. A black line shows the pathway of the agent. Bottom left: the agent gets the enacted interaction and a set of secondary visual interactions. This
constitutes the interactional context experienced by the agent. Center: to make the interactional context easier to read by an external observer, we mark the enacted
interaction with a green square and the other interactions with dark squares. As external observers, we know the positions and colors of the objects that caused the
secondary visual results. We thus display the secondary results as colored squares, using their colors and position relative to the agent. Right: Representation of
the current interactional context. Top right: the additional results are attached to the enacted interaction. As there are 6 primary interactions that produce secondary
interactions (Bump does not produce movement), there are six groups of secondary interactions. In the current context, some visual interactions associated to move
forward (white triangle) where enacted, while the five other groups remain empty. Bottom right: the enacted interaction is marked by a green square.

sured optic flow. This visual system thus provides secondary
results in the form of triples r′′ = 〈c, θ, v〉.

We did not construct primary results from visual stimuli be-
cause the measured optic flow depends on the agent’s displace-
ment. Since an action can generate different displacements
whether it succeeds or not, the agent cannot learn any spa-
tial properties based on the action only. Instead, we use vi-
sual stimuli to produce secondary results. Since an interaction
provides information on the agent’s displacement, each 〈 inter-
action,secondary result 〉 couple is related to a unique position
in space (unknown by the agent a priori). Since the bumping
interaction does not generate a movement in space, we do not
provide the agent with secondary results while bumping. A sec-
ondary result thus consists in seeing an element of color c at a
predefined (but unknown) position, while enacting an interac-
tion other than bumping. Note that the secondary results do not
convey information about the position of each result in the 2D
space. Therefore, the agent must reconstruct the spatial prop-
erty of the environment without presupposition about the spatial
position of its sensory stimuli.

Each couple (i, r′′) is related to a specific element of a cer-
tain color at a specific position in space relative to the agent.
We discretize the space of couples (i, r′′) to define a finite set
of secondary results. Other discretizations can be used, as the
agent learns to extract spatial properties that emerge from inter-
actions a posteriori. The selected discretization must, however,
allow the agent to observe relative movements of elements to
integrate spatial properties of the environment. We propose to
discretize the space of visual stimuli such that the positions as-
sociated with visual interactions define a regular grid of 15×30
positions that covers the agent’s visual field. The unit of this

grid is smaller than the size of the objects of the environment,
so that the agent can detect relative movements of these objects.
We use the same discretization for each primary interaction to
make observation of emerging properties easier.

We thus define a set of 8100 secondary interactions ((15×30)
positions ×3 colors ×6 interactions producing movement).

The agent moves in a 2D environment that can contain three
types of elements that afford interactions. Each type of element
has a specific color that makes it recognizable according to the
sensorimotor possibilities of the agent:

- Preys (blue fish), that afford the interaction eating,
- Walls (green bricks), that afford the interaction bumping,
- Algae (red flowers), that have no influence on the enaction

of interactions. Algae thus have the same interactional proper-
ties than an empty space. We expect the agent to learn to ignore
these elements.

These three types of elements are opaque: the agent cannot
see an object hidden by another one. Figure 3 shows the agent
in its environment, as well as an organized representation of the
interactional context.

4. A Spatial Memory Based on Interactional Experience

We present a mechanism that allows a PRI agent to integrate
its surrounding environment by constructing a spatial context.
The agent first learns to recognize objects that afford its interac-
tions. Next, the agent generates data structures that character-
ize position of objects in terms of interactions. By categorizing
and localizing objects in terms of possibilities of interaction, the
agent projects valences of interactions to different regions of the
surrounding space according to interactions that are assumed to
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AGENTmechanism 1

construction of 
object models

mechanism 2

mechanism 3

decisional
system

Et i t+1signatures

enaction certitudes

context of
object instances

construction of
a structure to

represent space

Figure 4. The agent’s algorithm is divided into three inter-dependent mecha-
nisms (Adapted from Gay, Georgeon, & Wolf (2014)). Mechanism M1 learns
to recognize objects that afford interactions according to the interactional set Et .
Mechanism M2 recognizes objects in space and constructs a spatial memory in
the form of data structures that characterizes spatial properties of the environ-
ment, and localizes, integrates and tracks objects defined by mechanism M1.
Mechanism M3 exploits information given by the spatial memory to generate
interactionally-motivated behaviors.

be afforded in these regions. Based on these values, the agent
can generate behaviors that satisfy its interactional motivation
in the short and medium terms.

Figure 4 presents the three sub-mechanisms that compose
our agent’s algorithm. Each sub-mechanism implements an el-
ementary functionality and exploits information provided by
other mechanisms. The first mechanism (Section 4.1) con-
structs data structures, called Signatures of Interactions, used
to represent categories of objects. Once learned through the
agent’s experience, signatures of interaction allow the agent
to predict the enaction status (success or failure) of future in-
tended interactions based on the current context. Signatures
of interactions are fundamental for the spatial memory system,
because the whole mechanism relies on properties learned by
these signatures. The second mechanism (Section 4.2) recog-
nizes objects characterized by signatures of interactions in the
surrounding environment, and learns to track and localize these
objects in egocentric reference while the agent is moving in
space. Mechanism M2 indexes positions in space by the se-
quences of interactions that allow the agent to reach these posi-
tions. It also keeps track of objects using data structures called
places. A place is a set of positions that share similar interac-
tional properties. The last mechanism (Section 4.3) exploits the
two previous mechanisms to generate behaviors that can satisfy
the interactional motivation of the agent.

4.1. Mechanism M1: constructing signatures of interaction

This mechanism is inspired by an experiment on the F5 area
(ventral premotor cortex) of the monkey brain carried out by
Murata et al. (1997). It showed that neurons in the F5 area
responded to the presence of an object in front of the animal,
whether the animal grasped the object or simply looked at it.
The response of these neurons varied depending on the move-
ment required to grasp the object rather than the global shape
of the object. The neurons remained active until the monkey
observed the absence of the object. From this experiment, we
draw two hypotheses:

1) A specific context of elements of the environment can be
defined and characterized by the interactions that are afforded

by this context. Therefore, we do not specify objects by intrin-
sic features but by the interactions they afford to the agent. An
object is thus defined as a specific context of elements that af-
ford an interaction. This idea relates to Gibson’s notion of affor-
dances (Gibson, 1977), and, more precisely, to the formaliza-
tion of affordances defined by Stoffregen (2003) and Chemero
(2003), who defined an affordance as a property of the agent-
environment coupling rather than a property of the agent or of
the environment alone.

2) A possibility of interaction can indicate the presence of the
object that affords it. The presence of objects in a given situa-
tion can thus be represented by a set of enactable interactions,
even when the agent cannot directly detect these objects.

Mechanism M1 exploits these hypotheses by estimating the
possible enaction status (success or failure) of interactions in
the current context. Several implementations were described
and tested by Gay & Georgeon (2013) and Gay, Georgeon, &
Wolf (2014)).

Note that the agent can characterize its environment using
only a limited number of interactions, regardless of the com-
plexity of the environment. Indeed, every part of the environ-
mental context can be characterized by the set of afforded and
the set of non-afforded interactions. This representation of the
environment is associated with motivational valence: objects
that afford interactions that have high valences becomes attrac-
tive, while objects that afford interactions that have negative
valences become repulsive. The agent thus projects valences of
interaction onto the current environment.

4.1.1. Formalization of signatures of interactions
The agent can only perceive its environment through interac-

tions, and thus cannot directly perceive objects that affords its
interactions. However, we can consider that an enacted inter-
action et carries information about the presence of elements in
the surrounding environment. An interactional context Et can
thus characterize a context that contains the object affording an
interaction i.

Mechanism M1 constructs, for each interaction i, set(s) of
interactions that can help the agent to assess the certitude of
presence or absence of the object that affords i. From these sets
of interactions, the agent will be able to assess the possibility of
successfully enacting i. We call signature S i of an interaction
i a structure learned by experience that characterizes such sets
of interactions. We formalize a signature S i of an interaction
i as a function (1) that gives a numerical value in the interval
[−1, 1] that reflects the possibility of successfully enacting i in
an interactional context E.

S i : P(I)→ [−1; 1] (1)

where P(I) denotes the partition of I (the set of subsets of I).
S i(E) = 1 means that the agent has the certitude that the tenta-
tive enaction of i in context Et will succeed, S i(E) = −1 means
that the agent has the certitude that the tentative enaction of
i will fail. Above some threshold µ ∈ [0; 1[, the agent has
some reasonable belief that i can be enacted, and below µ, a
reasonable belief that it would fail. When -µ ≤ S i(Et) ≤ µ, the
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agent makes no assumption about the possibility of enacting i
in context Et. The higher is µ, the more interactions are consid-
ered enactable or non-enactable, but with a less reliability. The
lower µ is, the fewer interactions are considered as enactable or
non-enactable, but with higher reliability.

S i must be learned and reinforced each time i is enacted as a
success or a failure (we do not consider enaction cycles where
i is not enacted) to respect the following condition:

lim
t→+∞

S t
i(Et−1) − res(i, t) = 0 (2)

where res(i, t) = 1 if i is successfully enacted at enaction cycle t
and res(i, t) = −1 if i failed. The reinforcement of the signature
of an interaction i is thus supervised, and compares certitude
of success in the previous interactional context Et−1 with the
actual enaction of i. Over time, the signature learning mecha-
nism reinforces signatures of interaction to minimize prediction
errors and provide pertinent certitudes.

The parameters that characterize S i characterizes how the
agent perceives (or experiences) the object affording the inter-
action i. Note that when the object affording an interaction i
cannot be detected by the agent, the signature of i cannot be
defined.

An implementation of this signature mechanism must respect
these two properties:

- A signature must be used to predict the result of an intended
interaction in the next enaction cycle.

- A signature must be reversible. Indeed, if an interaction i
is considered as enactable, then the object affording i can be
considered as present in the environment, and interactions that
would have detected this object can be considered as enacted.
Thus, it must be possible to define a function Ŝ i that can provide
contexts E ∈ P(I) that can afford i (given by Ŝ i(1)) and contexts
that do not afford i (given by Ŝ i(−1)). The signature can then
complete the current interactional context, adding information
that cannot be detected by the agent in the current context.

4.1.2. An example of implementation
We propose to implement the signature mechanism M1 on

our agent with a single layer neural network. This solution is
pertinent for our simple environment, as each interaction is af-
forded by a unique element of the environment. Each inter-
action is attributed a formal neuron that gives the certitude of
success in an interactional context Et. We modeled the in-
put layer of the neural network as a vector [ε1,t, ..., εn,t] where
n = Card(I) and εk,t = 1 when the kth interaction of I suc-
ceeded at enaction cycle t (i.e. ik ∈ Et) and εk,t = 0 otherwise.
The signature of an interaction i is characterized by the set of
synaptic weights [wi,1, ...,wi,n] and a bias wi,n+1. The certitude
function S i of an interaction i is defined with a linear function
of inputs, passed through an activation function that restrains
the output value in the [−1; 1] interval:

S i(E) = g

 ∑
k∈[1;n]

εk.wi,k + wi,n+1

 (3)

g(x) = tanh(
x
2

)

A signature S i of an interaction i is reinforced each time i is
enacted as a success or a failure, using the delta rule (or Least
Mean Squares method) (4). We note res(i, t) = 1 if i was suc-
cessfully enacted at enaction cycle t and res(i, t) = −1 if i failed.
The bias wi,n+1 is related to an input εn+1,t for which the value is
1 at each enaction cycle.

wt
i,k ←− wt−1

i,k + η × εk,t−1 × (res(i, t) − S i(Et−1)) (4)

∀k ∈ [1; n + 1], η is the learning rate where η ∈ [0; 1]. In
our experimentations, we used a constant learning rate of 0.5,
which offers a good compromise between learning speed and
signature stability.

Considering this implementation, a signature S i is charac-
terized by a list of weights {wi,k}k∈[0;n+1], that summarizes con-
texts that afford i or prevent enaction of i. We thus pro-
pose that, in this implementation, Ŝ i(1) = {wi,k}k∈[0;n+1] and
Ŝ i(−1) = {−wi,k}k∈[0;n+1].

For visualization by an external observer (like us), we pro-
pose to display summarized context Ŝ i(1) in a way that makes
them easy to read, shown in Figure 5 (note that the agent does
not need to topographically organize signature weights). First,
as we know, as an external observer, the associated primary in-
teraction and the characterized color of visual interactions, we
propose to gather weights according to the associated primary
interaction and color of the secondary interaction they are con-
nected to. We also know the position in space characterizing
each secondary interaction: each group of weights can be orga-
nized to match positions of their connected secondary interac-
tions. This organization allows observation of spatial properties
of objects, such as position according to the agent and size. Fi-
nally, we overlap groups of weights for which the connected
secondary interactions are associated to the same primary in-

Vector of Card(I) weights wi,k

Organize overlap groups

0-max( |w   | )i,k
k∈[0;n]

max( |w   | )
k∈[0;n]

i,k

Figure 5. Representation of signatures for an external observer (here, the sig-
nature of interaction move forward of a trained agent). Signature weights are
organized in a similar way as for the interactional context (Figure 3). Left: a
signature consists of a vector of weights. We propose to gather weights related
to visual interactions that are related to a same color stimulus and associated
with a same primary interaction, and organize each group to match positions
characterized by visual interactions (middle). Weights related to primary inter-
actions and the bias are displayed separately with eight squares, in the order
given in Table 1. As we have three colors, we overlap groups related to differ-
ent colors using the three channels of a RGB image (right). Here, an external
observer can observe that the interaction move forward is afforded by the ab-
sence of green and blue elements in front of the agent: some weights related to
interactions seeing a green and seeing a blue element are strongly negative.
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teraction: as there are three primary colors, we can display
the three overlapping groups using the three color channel of
a RGB image. Of course, each color group is displayed using
the channel of the same color. We can thus observe the color
properties of the object defined by signatures.

4.2. Mechanism M2: construction of a structure to character-
ize space

This mechanism is designed to generate a structure, we call
space memory, which can give relevant and exploitable infor-
mation about the environmental context of the agent. Our pre-
vious work (Gay, Georgeon, & Wolf, 2014) have shown that
only two types of information are required to localize and con-
sider an object in space: the interactions that allow to move
closest to this object, and an estimation of its distance. Im-
plementation of a hard-coded but imprecise space memory that
generates this limited information on a robot has shown that the
decisional mechanism was robust enough to enable the robot to
generate behaviors satisfying its interactional motivation. Thus,
the mechanism we presented in this section is designed to gen-
erate these two types of information.

The mechanism that constructs and maintains this structure
is divided into two sub-mechanisms (Figure 6): the first mecha-
nism extracts spatial regularities from signatures of interactions
and detects objects in the area of space covered by interactions.
We call this space Observable Space, as an object in this area
can be detected through enacted interactions. The second mech-
anism exploits spatial regularities to maintain the position of
previously detected objects in the surrounding space, we call
Global Space. The global space consists of the space, in ego-
centric reference, that the agent can integrate. Global space
includes observable space.

4.2.1. Detecting objects in observable space
This mechanism exploits the relations between interactions,

discovered through their signatures. Indeed, a signature S i gen-
erates a link between an interaction i and sets of interactions
{ jk}l ∈ Ŝ i(x), x ∈ {1;−1} that allows to determine the enactabil-
ity of i. However, interactions jk of these sets may have their
own signatures S jk , and each context El = { jk}l contains a
unique primary interaction j0 and a set of secondary interac-
tions { jk}k,0 associated to j0. By considering signatures of in-
teractions jk ∈ El, we can characterize an environmental con-
text that, if moved by enacting j0, will afford i. We can thus
backmove a signature S i through a primary interaction j0 using
the following procedure: we note Ŝ σ0

i = Ŝ i(1), where σ0 is an
empty sequence of interactions, and construct:

Ŝ [ j0,σ0]
i =

⋃
∀El∈Ŝ

σ0
i / j0∈El

{E ∈ P(I) / ∀ jk ∈ El, S jk (E) > 0} (5)

Interactional contexts of Ŝ [ j0,σ0]
i characterize environmental

contexts that can afford i after enacting j0. By applying succes-
sively (5), it is possible to backmove a signature S i through an
increasing sequence of interaction σ. We call predecessor S σ

i a
signature S i backmoved through a sequence of interactions σ.

A predecessor characterizes a context that, if moved through the
enaction of the sequence of interactions σ, affords i.

By using the predecessor S σ
i of S i, it is possible to estimate

the prediction of enaction result of an interaction after enacting
a sequence of interactions σ (regardless of the enactability of
σ). We then consider that an instance of the object affording i
is present at a position that can be reached by enacting the se-
quence σ, with a certitude given by S σ

i (Et). A certitude of 1
indicates that an instance of the object affording i is present
at position characterized by σ with an absolute certitude, and
a certitude of −1 indicates that the instance is absent with an
absolute certitude. Note that this mechanism is not a path plan-
ning algorithm: the sequence σ is considered regardless of its
enactability.

We thus define a way to assimilate a position in the observ-
able space as a sequence of interactions. An instance of an ob-
ject affording an interaction i, localized at a position σ, consists
of a context that, when moved by a transformationσ, affords the
interaction i. This definition of positions relates to the notion of
Representative Space of Poincaré (1902), for whom localizing
an object in space means considering the movement needed to
reach it.

We implemented the signature predecessor mechanism on
our agent. Considering our implementation of signatures based
on formal neurons, the predecessor of a signature of an inter-
action is computed as follows: we note Ŝ σ

i, j0
⊂ Ŝ σ

i the subset
of weights of a signature S i or a predecessor S σ

i that are con-
nected to the primary interaction j0 or a secondary interaction jk

O
bj

ec
t r

ec
og

ni
tio

n

context of 
instances of

object

add
instances

update

Signatures

Et

Context of
object instances

AGENTmechanism 1

construction of 
object models

mechanism 2

mechanism 3

decisional
system

Et i t+1signatures

enaction certitudes

context of
object instances

construction of
a structure to

represent space

Figure 6. Construction mechanism for a structure that characterizes the en-
vironmental context. This mechanism is divided into two sub-mechanisms:
the first mechanism recognizes and localizes distant objects in the observable
space, using the last interactional context Et and signatures of interactions. The
second sub-mechanism then stores detected objects, and maintains positions of
stored objects in egocentric reference at each enaction cycle. This second sub-
mechanism characterizes positions of objects in the global space. Stored objects
can be compared with detected objects to possibly recognize and update them.
The object context consists of a list of objects localized by the interaction al-
lowing to move closest and their distances, and can be used by the decisional
system (M3).
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Figure 7. From left to right: signature of interaction bump, predecessors of the
signature of interaction bump by an increasing sequence of interactions (below
the signature predecessors). The green blob that represents the object affording
bump is moved through the observable space when an interaction is added to
the sequence characterizing the object instance position. However, we do not
observe significant changes in color, shape or size of the object, which allows
detection of objects at different positions.

associated to j0. The predecessor S [ j0,σ]
i is computed by adding

signatures of interactions jk associated with j0, weighted by the
corresponding weights wσ

i,k ∈ Ŝ σ
i, j0

, and normalized according
to the greatest weight of Ŝ σ

i, j:

Ŝ [ j0,σ]
i =

∑
wσ

i,k∈Ŝ
σ
i, j0

wσ
i,k

max
wσ

i,k∈Ŝ
σ
i, j0

(wσ
i,k)
× Ŝ jk (1) (6)

In this implementation, we only consider weights for which
the absolute value is greater than a threshold to reduce the num-
ber of weights to compute. The predecessor S [ j,σ]

i is considered
as non-exploitable if a certain amount of signature of interac-
tions designated by S σ

i, j are not defined. This means that the
object is partially or totally out of the observable space and can-
not be detected through the path [ j, σ]. Figure 7 shows an ex-
ample of sequence of signature predecessors by an increasing
sequence of interactions, with signatures learned by a trained
agent (we do not threshold weights in this example).

We also propose to reduce the number of possible trans-
formations σ by detecting redundant positions: when two se-
quencesσ1 andσ2 of different lengths generate two similar pre-
decessors of the same signature of interaction (i.e. they define
similar contexts Ŝ σ1

i ' Ŝ σ2
i ), it is then possible to remove the

longest sequence. This detection ensures that sequences are al-
ways the shortest, for every position of space. Redundancy can
vary from one interaction to another: as an example, if a signa-
ture characterizes an object with no specified orientation, two
sequences of interactions that lead to the same instance but from
different orientations may be considered as redundant, which is
not the case with an object that needs a certain orientation to
afford an interaction.

4.2.2. Notion of Places
It is possible to store object instances and their positions in

egocentric reference by using sequences defined by the object
detection mechanism described in Section 4.2.1. However, if
the agent does not enact this sequence of interactions, or if the
sequence is not enactable in the current environment, the object

instance is lost from agent’s memory. We thus need to define a
structure that can learn to store and update positions of object
instances, regardless of enacted interactions.

As we defined positions with sequences of interactions (Sec-
tion 4.2.1), we can obtain the two required types of information:
first, the distance, given by the minimum number of interactions
needed to reach the object instance. Distance is thus defined in
terms of number of interactions rather than a geometrical dis-
tance. Second, the first interaction of a sequence gives the in-
teraction making it possible to move closest, as the sequence is
considered as the shortest path to reach the instance.

We do not need to consider two instances of the same object
separately when they share the same characteristics. We thus
propose to define a place as the list of positions (or sequence of
interactions) that are characterized by the same interaction and
the same distance. A place thus consists of a list of sequences
of interactions that have the same length and begin with the
same interactions. An object instance is considered as present
in a place l if at least one instance of this object is detected at a
position that composes this place, i.e. ∃σ ∈ l / S σ

i (Et) > µ.
We can thus define a context that characterizes the content

of the observable space by listing the interactions that can be
enacted in each place. This context defines interactions that
allow the agent to move toward distant affordances.

4.2.3. Composite places
A context of objects based on places is limited to the observ-

able space as it consists of positions that can be experienced
through interactions. We propose the following principle, il-
lustrated in Figure 8, to characterize the presence of an object
instance in the global space:

We consider an object instance in the non-observable space.
If the agent uses an interaction i that produces a movement
bringing the object instance in a place l of the observable space,
then we consider that before enacting i, it was possible to char-
acterize the presence of the object instance by considering the
place l backmoved by the interaction i. We thus propose the no-
tion of composite place to define such a moved primitive place:
we note [i1, ..., in; l〉, where [i1, ..., in] is a sequence of interac-
tions we call the path of the composite place, and l is the final
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Figure 8. Principle of composite places. Left: an edible alga is present in the
non-observable space (places are randomly defined for illustration). If the agent
turns left, then the element can be detected in place 12. It was thus possible to
initially characterize the presence and the position of this element by consider-
ing the place 12 displaced by the interaction turn left. We call composite place
a place preceded by an interaction or a sequence of interactions.
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place of the composite place. A composite place thus consists
of a set of positions (the final place), preceded by a sequence of
interactions (the path) that can backmove the final place in the
non-observable space.

4.2.4. Signatures of places
To use a composite place, we first need to determine the

positions of the observable space (if any) that belong to the
area defined by this composite place. Note that this process
is not applied to primitive places as their positions are defined
by construction. To determine whether a position belongs to a
composite place, we propose the following principle: the agent
detects positions of object instances in its environment, as an
example, an instance of the object affording the interaction i at
position σ. Then, it enacts the path of a composite place l. If
an instance of the object affording i is then detected in the final
place of l, then the initial position σ of the object instance may
be included in the area characterized by the composite place l.
Of course, the instance is not necessarily the same. It is thus
preferable to focus on instances of the less represented object
of the context. Figure 9 illustrates this principle.

σ

4l

t t+1

{l }4∈

⊆ l4σ

σ

Figure 9. Principle of signatures of places. At enaction cycle t (left), the agent
detects an instance of the object that affords the interaction eat, localized at
position σ. The agent then turns 90◦ left. An instance of the object that affords
the interaction eat is detected in the place l4 (yellow area). Thus, the composite
place [turn 90◦ left][l4〉 may contain the position σ. Note that the agent cannot
determine whether or not the two detected instances are the same.

Learning to define places that belong to a composite place
thus helps predict observation of an object instance in the final
place according to a context observed before enacting the path
of the composite place. We propose a principle similar to the
interaction signature principle.

We define a signature of place S l of a composite place l as a
structure that characterizes the positions σ in space considered
as included in l. For each interaction i, we define the context
of position Eπ

t,i of the object affording i as the list of every po-
sition σ of space in which an instance of the object affording
i is detected: Eπ

t,i = { σ / S σ
i (Et) > µ}. As with signatures of

interaction, signatures of places can be formalized as a function

S l : P(Σ)→ [−1; 1] (7)

where Σ is the set of possible sequences of interactions σ and
P(Σ) denotes the partition of Σ (the set of subsets of Σ). Func-
tion S l characterizes the certitude of presence of an instance
of an object affording an interaction i in the final place of a

composite place l, after enaction of the path of l, according to
a context of place Eπ

t,i, with an absolute certitude of presence
when S l(Eπ

t,i) = 1 and an absolute certitude of absence when
S l(Eπ

t,i) = −1.
The place signature learning process is similar to the interac-

tion signature learning process. It consists in reinforcing signa-
tures of places, by analyzing contexts of places, to define perti-
nent certitude of presence of instances in a place l. The learn-
ing process is applied to a signature S l when the path of the
composite place l is successfully enacted. The reinforcement
of the signature S l of a place l compares certitudes of presence
in a place in the initial context of position Eπ

t−n,i, where n is the
length of the path of l, and the actual presence of an instance
of the object affording i in the place l. In the same way as the
interaction signature learning mechanism, the place signature
learning mechanism reinforces signatures to minimize predic-
tion errors and provide pertinent certitudes.

4.2.5. Storage of object instances
According to our definition of objects, an object instance is

considered as present at every position in space where the cor-
responding interaction is enactable. However, certain elements
can afford an interaction from multiple positions. It is thus nec-
essary to limit the stored instances of a certain object instance
to the most relevant ones. As an example, walls can be bumped
from an infinity of positions, but the most relevant position is
the position for that the agent is most likely to reach in the short
term, which corresponds to the closest point of the wall. We
thus define the pertinence of an object instance according to
the certitude of success and the distance of this instance: S σ

i (Et)
d(σ) ,

where σ is the position of the instance, and d(σ) the distance of
the instance, which corresponds to the length of the sequenceσ.

We need to limit the number of stored object instances, by
limiting the stored instances to the most pertinent instances. We
propose a procedure that first selects the most relevant object
instance contained in each place (primitive or composite), and
then eliminates instances until each remaining instance is cov-
ered by at least one place that only covers this instance. This
procedure ensures that, for each stored instance, there is at least
one place that can characterize the position of this place and
separate it from other instances of the same object.

Selected instances are then stored by the space memory in
the form of a list of places {lk} containing all the places (primi-
tive or composite) that contain the position of this instance. The
position of the instance is then characterized by the intersection
of places of this list. As composite places can characterize ar-
eas in the non-observable space, such a list can characterize the
position of an object instance in the global space.

4.2.6. Object tracking based on composite place
We use the sequential aspect of composite places to keep

the localization of object instances in the space memory. In-
deed, when the first interaction of a composite place is enacted,
this interaction can be removed from the path of the composite
place. The object can then be considered as present in a new
composite place composed of the previous composite place mi-
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nus the first interaction. For example, if the position of an ob-
ject instance is characterized by a composite place [i1, i2..., in; l〉,
and if the agent enacts the interaction i1, then the instance po-
sition can be characterized by the composite place [i2, ..., in; l〉.
This method allows an object instance to be followed in the
global space. However, this method is limited by the length of
composite interactions. We thus propose an additional mecha-
nism that learns to define connections between places.

4.2.7. Signature of presence
Signatures of places cannot characterize the position of an

object instance in the non-observable space as signatures of
places are based on positions of the observable space. To over-
come this limitation, we propose that the intersection of the set
of places characterizing the presence and position of an object
instance defines a small area of space that can be assimilated
to a position in the global space. Just as for place signatures,
it is possible to determine and learn such sets of places defin-
ing positions that are included in the area characterized by a
composite place.

To determine whether a set of places defines a position that
belongs to a composite place, we propose the following princi-
ple: the agent first considers object instances stored in its space
memory. The position of each object instance is characterized
by a list of places, for which the intersection defines the most
probable position of the object instance. As an example, the
position of an instance of the object affording the interaction i
is stored by the space memory with a set of places {lk}. Then,
the agent enacts the path of a composite place l. If an instance
of the object affording i is then detected in the final place of
l, then the initial set of places {lk} may define a position that
is included in the area characterized by the composite place l.
Figure 10 illustrates this principle:

l1

2

3

4l

l

l

t t+1

{l }4∈

⊆ l4{l    l    l }1 2 3ᑎ ᑎ{l    l    l }1 2 3ᑎ ᑎ∈

Figure 10. Principle of signatures of presence. At enaction cycle t (left), the
space memory contains an instance of the object affording the interaction eat,
for which the position is characterized by places l1,l2,l3. The agent then turns
90◦ left. An instance of the object affording the interaction eat is detected in the
place l4. Thus, the composite place [turn 90◦ left][l4〉 may contain the context
of place {l1 ∩ l2 ∩ l3}. Note that the agent cannot determine whether or not the
two detected instances are the same.

We define the context of place Eλ
t,ω of an object instance ω

as the list of places {lk} that characterize the position of ω. We
define the signature of presence of a place l as a structure that
characterizes contexts of place that define positions included
in the area characterized by l. As with signatures of places, a
signature of presence S p

l of a place l can be formalized as a

function that characterizes the certitude of presence of an ob-
ject instance ω in the final place of a composite place l after
enacting the path of l, according to a context of place Eλ

t,ω that
characterizes the position of this instance, with an absolute cer-
titude of presence when S p

l (Eλ
t,ω) = 1 and an absolute certitude

of absence when S p
l (Eλ

t,ω) = −1.
The presence signature learning process is similar to the

other signature learning processes. It consists in reinforcing
signatures of presence, by analyzing contexts of place, to define
pertinent certitude of presence of an instance ω in a place l. The
signature of presence of a place l is reinforced when the path of
l is successfully enacted. The reinforcement of the signature of
presence of a place l compares certitudes of presence according
to the initial presence context Eλ

t−n,ω, where n is the length of the
path of l, and the real presence or absence of the object instance
ω in the place l. Just like the two previous signature learning
mechanisms, the presence signature learning mechanism must
reinforce presence signatures to minimize prediction errors and
provide relevant certitudes.

While place signatures are used to evoke places that can
characterize the position of an object instance detected in the
observable space, presence signatures can evoke places that can
characterize the position, in the global space, of an object in-
stance stored in space memory. The principle of presence sig-
nature allows the position of an object instance to be tracked for
long sequences of interactions, by continuously adding com-
posite places to the context of place of an object instance, and
is only limited by the certitude and the precision of signatures
of presence.

4.2.8. Recognition of stored instances
As the agent can observe the same object instance more than

once, we propose a mechanism that recognizes and updates
stored instances that may correspond to instances detected at
the last enaction cycle. This mechanism compares the expected
positions of an object instance with the positions where new
instances of the same object are detected.

As stored instance position is characterized by a list of
places, we can use these places, and especially their signatures
of places, to define the expected positions of an object instance.
The certitude at each position is defined by the number of places
of the list for which the signature contains this position. Then,
for each detected instance, we find the stored instance with the
greatest certitude at the position of the detected instance (when
the certitude is not null). The detected instance then replaces
the stored instance.

4.2.9. Illustration of the principle of the space memory mecha-
nism

The following situation was observed during our experi-
ments, and illustrates how the space memory can exploit pres-
ence signatures to track an object escaping from its sensory sys-
tem. We begin with the configuration displayed in Figure 11.
In this configuration, there is a prey on the left of the agent
(we call A-prey) and a prey on its right (we call B-prey). Dur-
ing this experimental run, we observed that the agent showed
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Figure 11. Update of the estimated position of an object with presence signatures. From left to right: the enacted primary interactions at each enaction cycle, the
agent in its environment, and the list of places that characterize the position of B-prey. The list of places is organized in the form of a context that gives the state of
all places (places that are in the list of places that characterizes the position of the prey are blue, other places are black), to be compared with presence signatures (see
Section 5.3.3). This context is organized as follows: primitive places are organized according to the interaction and distance that characterize them (left rectangle).
Composite places are organized in a similar way, according to their final path, and separated according to their path (seven right rectangles). A blue square means
the object position is characterized by the corresponding place. In the first step, position of B-prey is characterized by ten places (we give some examples of places).
In this configuration, we exploit the fact that the agent prefers preys on its left side when the difference in distances is small, due to asymmetries in its signatures.
The agent moves forward and turns left to reach A-prey. At this time, the places that characterize the position of B-prey are removed, as none of them begin with
turn 90◦ left. However, signatures of presence evoke a set of four composite places (presented in Figure 24) that begin with turn 90◦ left. The estimated position of
B-prey is then updated by removing the first element of the path of these four places, as this element was already enacted by the agent. At the end of the enaction
cycle, the position of B-prey is characterized by a set of four composite places with a path that begins with turning 90◦ left. An interesting point is that the position
of B-prey was initially characterized by turning 90◦ right, while now it is characterized by turning 90◦ left.

a preference for preys that are on its left side when the differ-
ence in distance is small. This preference is probably due to
asymmetries in its signatures. We exploit here this character-
istic to observe how the space memory encodes the position of
B-prey when it disappears from the visual field of the agent. At-
tracted by the A-prey, the agent moves forward. Then, B-prey
is not longer visible, and its position is characterized by a set
of places. These places indicate that B-prey can be reached by
turning 90◦ right and turning 45◦ right. This context is compat-
ible with presence signatures of four composite places (see Sec-
tion 5.3.3 and Figure 24 for their signatures). These four places
can thus be added to the list of places that characterize the po-
sition of B-prey. The agent then enacts turn 90◦ left to reach
A-prey. The places that characterize the position of B-prey are
removed, as they do not begin with turn 90◦ right interaction.
However, the four composite places evoked in the previous en-
action cycle begin with this interaction. These places are then
updated. The position of B-prey is now characterized with four
places which indicate that B-prey can be reached by turning
90◦ left. Thus, B-prey moved (in egocentric reference) from an
area that can be reached by turning right to an area that can be

reached by turning left: presence signatures thus link areas of
the global space in terms of interaction.

4.3. Mechanism M3: Decisional Mechanism
The agent’s decisional mechanism is divided into four sub-

mechanisms, as shown in Figure 12. Three of these mecha-
nisms are defined to learn the three type of signatures. These
mechanisms are similar and their learning process are imple-
mented in the same way. The fourth mechanism exploits the
space memory to generate behaviors satisfying the interactional
motivation of the agent.

4.3.1. Learning mechanisms
A previous work (Gay & Georgeon, 2013) has showed that

an agent equipped with our signature mechanism must be
equipped with a mechanism dedicated to learn and test signa-
tures of interaction. Indeed, when the agent constructs its signa-
tures based on coincidences observed with a behavior generated
by the exploitation mechanism, it may be locked in an irrelevant
behavior that does not allow it to find out incoherences in sig-
natures.
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The agent is equipped with three mechanisms dedicated to
learn, respectively, signatures of interactions, signatures of
places and signatures of presence. As each type of signature
depends on the previous types, each mechanism takes priority
over the next mechanisms.

As the signature learning process is similar for all signatures,
the three mechanisms are based on the same principle. The
first mechanism (here, the signature learning mechanism) first
computes the certitude of its structures, and selects the struc-
ture with the lowest certitude (in absolute value). Indeed, the
structure that has the lowest certitude (in absolute value) can be
considered as the least predictable structure in the current con-
text, and thus the structure for which the signature may learn the
most if tested. If this certitude is lower than a certain threshold,
we call learning threshold, then the mechanism proposes this
structure and the agent tries to enact it. If no structure can be
elected, the next mechanism repeats this procedure. The pro-
cess is repeated until a learning mechanism proposes a structure
to test or until all the mechanisms have been tested. In this sec-
ond case, the agent uses the exploitation mechanism, described
in the next section (4.3.2).

In the case of the mechanism dedicated to the interaction sig-
nature learning process, we need to consider that a secondary
interaction can only succeed or fail when its associated inter-
action is successfully enacted: a secondary interaction is thus
a candidate when its associated interaction is considered as en-
actable with a high certitude (we used a threshold of 0.8). We
also need to consider interactions for which the object cannot
be observed, and thus for which the result cannot be predicted.

interaction
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place signature
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signature learning
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Figure 12. Decisional mechanism. This mechanism is composed of three learn-
ing mechanisms that test and learn (in the following order of priority) signatures
of interaction, signatures of places and signatures of presence. When a signa-
ture is considered as unreliable in the current context, the mechanism proposes
to test the associated interaction or place. When none of the learning mecha-
nisms propose an interaction or a place, the exploitation mechanism determines
the interaction that best satisfies the interactional motivation of the agent in the
short and medium terms, according to the list of enactable interactions (given
by mechanism M1) and the context of object instances (given by mechanism
M2).

A secondary interaction can be selected if, after at least five
consecutive correct predictions, the absolute value of the certi-
tude is greater than a threshold (set to 0.2). Indeed, weights of
the signature of an interaction afforded by an object that cannot
be detected are defined according to coincidences, and thus are
expected to have a low value.

The mechanisms dedicated to place and presence signature
learning processes can also propose a composite place for
which a part of the path was already enacted. In this case, the
mechanism proposes the sequence of remaining interactions,
when the certitude of the composite place is low in absolute
value in a context of position or a context of place at enaction
cycle t − n (where n is the number of interactions of the path
that are already enacted)

Note that we do not define a learning and an exploitation pe-
riod: when the signatures become reliable, the learning mech-
anisms are less used. However, the agent retains its learning
abilities during all its life, and learning mechanisms can be used
in case of environmental changes.

4.3.2. Exploitation mechanism
Exploitation is based on the mechanism presented in Gay,

Georgeon, & Wolf (2014) and adapted to be used with an ag-
nostic space memory based on places. This mechanism con-
sisted in measuring variations in distance of object instances
produced by a candidate interaction. The variation in distance
is weighted by the valence of interactions afforded by object in-
stances, and by the distance of the instance. Thus, an instance
of an object affording an interaction with a positive valence, that
can be moved closer by a candidate interaction ic, adds a pos-
itive utility value to ic, and an instance of an object affording
an interaction with a negative valence adds a negative utility
value. The utility value depends on the distance of instances,
so that close instances have a greater influence on the decision.
Experiments with a hard-coded space memory showed that this
mechanism was robust enough to be implemented on a robot,
despite the low precision of the memory.

The utilization of places simplifies the exploitation mecha-
nism: indeed, each place carries the two types of information
required, i.e. the distance and the interaction(s) making it pos-
sible to move closest the most to the object instance:

- primitive places contain the distance and the interaction by
definition.

- The distance of a composite place is the sum of the distance
defined by its final place and the length of its path. The inter-
action making it possible to move closest the most is the first
interaction of the path.

However, the path is not necessarily the shortest sequence
to reach an object. We thus need to estimate the distance of
an object to eliminate irrelevant paths and thus only take inter-
actions that allow to move closer to the object instances into
account. We propose using the certitude of places: the places
that characterize the position of an instance are ordered by in-
creasing distance. For each distance, we select the place with
the greatest certitude, noted as cd,max. We then select the first
local maximum of certitude, noted as dmax, defined by
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dmax = min
d∈N

(d)/{cd,max > cd−1,max ∧ cd,max ≥ cd+1,max} (8)

Distance is then estimated as a sum of distances of places for
which the distance dl ∈ [dmax − ε; dmax + ε] (we used ε = 1 in
our implementations), weighted by the certitudes of presence cl

of these places.
We consider that the variation in distance produced by a can-

didate interaction is always -1 interaction, as the distance of an
instance is defined in terms of number of interactions. We note
ω an instance of the object affording iω stored in memory M,
and Rω the list of interactions making it possible to move closer
to instance ω. The utility value uic given to each candidate in-
teraction ic is given by:

uic =
∑
ω∈M

{
f (dω) × ν(iω) i f ic ∈ Rω

0 else (9)

Where f is a function that reduces the influence of object in-
stance according to their distance, and ν(iω) is the valence of ic.
In our implementation, we used the function e−γd, where γ is
the object coefficient that characterizes the influence variation
according to the distance of an object instance. With a low
object coefficient, distant objects may have a greater influence
than close objects. With a high value, the agent may not con-
sider distant objects. Figure 22 shows how the object coefficient
can affect the agent’s behavior.

We need to consider that an object instance at a distance of 1
must not be taken into consideration in the utility value, as the
agent can directly interact with it. Indeed, if the agent inter-
acts with an object, the object may be modified by the inter-
action and vanish from the space memory. This disappearance
could be considered as a positive or negative event, according
to the valence of the afforded interaction. However, this event
is irrelevant as the agent can enact the afforded interaction and
experience the valence of the interaction.

The variation of global proximity is then used to compute the
global satisfaction value of a candidate interaction:

ν′(i) = ν(i) + β × ui (10)

where β is the influence coefficient of the space memory.
This coefficient characterizes the influence of variation pro-
duced by the enaction of a candidate interaction on the environ-
ment (long-term decision) with respect to the satisfaction value
of this interaction (short-term decision). With a low coefficient,
the agent will not consider distant object instances. With a high
coefficient, the agent will not consider the satisfaction value of
its interactions. In the implementations proposed in this paper,
the coefficient β is predefined. Defining a variable coefficient
that depends on agent internal states is an open question that
we intend to study in future work.

The mechanism then selects the candidate interaction with
the greatest global satisfaction value. The decision thus con-
siders short term satisfaction (through interaction valence) and
future satisfaction (through variation in distance of object in-
stances).

5. Experiments

We tested our mechanisms on the agent described in Sec-
tions 3 and 4. We propose to test the different mechanisms
separately to observe their properties more precisely. When a
whole sensorimotor loop is needed, we implement simplified or
hard-coded versions of the other mechanisms based on obser-
vations of these mechanisms. The versions of the agent and the
corresponding mechanisms are displayed in Figure 13. Testing
mechanisms separately makes the analysis of learned structures
and emergent behaviors easier to understand and interpret. The
downside of this approach is that we cannot observe side-effect
that can result from a simultaneous utilization of the different
mechanisms. Conclusion section discusses this possibility.
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Figure 13. The successive experiments test the different sub-mechanisms of the
agent’s decisional system. The first experiment tests the mechanism M1 with
the interaction signature learning process (red). The second experiment focuses
on the properties of the distant object detection sub-mechanism (green). The
last experiments use structures obtained in previous experiments and simplified
versions of other mechanisms based on properties observed in previous exper-
iments to investigate properties of the space memory and emergent behaviors
produced by the exploitation mechanism (blue).

The first experiment tests the interaction signature construc-
tion mechanism (M1). We implemented the interaction signa-
ture mechanism M1 and the interaction signature learning sub-
mechanism of the decisional system M3 to generate a complete
sensorimotor loop. As the interaction learning process is the
first learning stage of the agent, we do not need the space mem-
ory and the exploitation mechanism. This experiment is de-
signed to observe properties of signatures of interactions.

The second experiment tests the object recognition sub-
mechanism of the construction mechanism of a structure to
characterize space (M2). We needed to test this sub-mechanism
separately as it is the most CPU consuming. As the object
recognition mechanism is not based on a learning process, we
only test object detection in several environmental contexts
rather than observing an emergent behavior. We used the sig-
natures of interactions learned in the previous experiment.

The last experiments test the space memory (sub-mechanism
of M2) and the decisional system (M3). We used a simpli-
fied interaction signature mechanism and object detection sub-
mechanism, based on observations of the first two experiments.
These experiments investigate the learned structures and emer-
gent behaviors by observing how the agent interacts with its
environment in different environmental contexts.
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5.1. Signature of interactions learning

This experiment tests the interaction signature learning pro-
cess, by analyzing properties that emerge from signatures of
interactions. Although this experiment was described in a pre-
vious work (Gay, Georgeon, & Wolf, 2014), we give in this
paper more results to highlight properties that emerge from sig-
natures.

We equipped the agent with the mechanism dedicated to
the interaction signature learning process described in Sec-
tion 4.3.1, and let the agent learns signatures of its interactions.
The signatures of primary interactions emerge and stabilize af-
ter nearly 4000 to 5000 enaction cycles, and signatures of vi-
sual interactions begin to emerge after 8000 enaction cycles.
While signatures of visual interactions begin to stabilize, ele-
ments are progressively removed from the environment to let
the agent experience visual interactions related to distant posi-
tions. Figure 14 gives some examples of signatures of interac-
tion obtained after 20 000 enaction cycles. We can observe that
interaction move forward is related to the absence of green and
blue objects (mid-red blob) in front of the agent, bump is re-
lated to a green object in front of the agent and eat is related to
a blue object in front of the agent. We can also note that the size
of blobs is equivalent to the size of the agent. Thus, these sig-
natures can define certain spatial properties of the agent’s body
schema. We can observe that move forward and eat are related

to the interaction bump with a negative weight, while bump is
related to itself with a positive value. Indeed, when the agent
bumps into a wall, the wall stays in front of the agent, which
makes the bump interaction possible again. Signatures can thus
integrate non-visual information, and associate multi-modal in-
formation that characterizes the same object. Signatures of turn
interactions (not represented on the figure), that cannot fail, are
strongly related to the bias of the formal neuron that composes
the signature, indicating that the result of turn interactions does
not depend on the context.

Signatures of visual interactions show that an interaction re-
lated to a certain position p and a color c is related to an element
with the same color c, located at a position p′ that corresponds
to the position p moved by the transformation produced by the
primary associated interaction: a translation for visual interac-
tions associated with move forward and a rotation for the visual
interactions related to turn interactions. Figure 15 shows these
transformations, by drawing a link between the position associ-
ated with a visual interaction and the barycenter of the positions
of the higher weights of its signature, which allows observation
of the geometrical information defined by signatures of interac-
tions. This difference of position shows that spatial transforma-
tions produced by interaction can be defined in the observable
space through signatures of interactions. Table 2 summarizes
average geometrical transformations obtained for each group

a b c d e
Figure 14. Signatures of interaction of move forward (a), bump (b) and eat (c), seeing green at position given by the red square while moving forward (d) and
seeing green at the position given by the red square while turning 90◦ right (e). Interactions displayed on the left show the associated primary interaction of each
group of secondary interactions. The position of the agent (according to positions of visual interactions) is given by an orange arrow. Weights of each signature
are normalized according to the greatest weight (in absolute value) of the signature. On each color channel, a value of 1 means a normalized value of 1 and a
value of 0 means a normalized value of -1. In the case of primary interactions, a white square means a normalized weight of 1 and a black square, a normalized
weight of -1. We can observe that the signature of move forward relates to the absence of green and blue in front of the agent (mid-red blob), bump is afforded by a
green object in front of the agent and eat is afforded by a blue object if in front of the agent. Bump is also related to itself, which means that bump can be enacted
repeatedly. The secondary interactions are related to an element of the same color. The position of this element corresponds to the position of the interaction, moved
by the transformation produced by the associated primary interaction (i.e. a translation and a rotation). As an example, if the agent has enacted, at the previous
enaction cycle, the interaction move forward and a visual interaction consisting in seeing green at the right of the agent, then the interaction seeing green at the
position given by the red square while turning 90◦ right (e) may be successfully enacted. The signature (e) also indicates that this interaction can be considered as
successfully enactable if the agent has, as an example, turned left and seen green on its right. These offsets show that signatures can define the geometrical properties
of observable space.
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Figure 15. Transformations produced by enacting primary interactions. We display these movements by drawing a link between interactions and the barycenter of
their signatures (we only take highest weights, in absolute value, into consideration). Left: visual interactions related to seeing green while moving forward. Right:
visual interactions related to seeing blue while turning 45◦ left. The translation and the rotation are clearly recognizable. Note that the agent cannot access this
representation, as it ignores positions associated to visual interactions.

Table 2. Average geometrical transformations discovered through signature of interactions, for each group of visual interaction: translations on x and y axis, rotation
on z axis, as an external observer can observe. Distance unit is defined according to the distance covered by enacting move forward. Transformation are very close
to real transformations (translation of 1 unit on y axis and rotations of 90◦ and 45◦). We do not compute the average transformation for visual interactions associated
with eat as too few of them are considered as reliable.

associated
interaction green blue red

forward −0.033; 1.003;−0.15◦ −0.030; 1.005; 0.13◦ −0.031; 1.012;−0.12◦

eat
left 90◦ 0.235;−0.075; 89.43◦ 0.190;−0.159; 89.87◦ 0.154;−0.100; 89.35◦

right 90◦ −0.284;−0.086;−89.12◦ −0.191;−0.154;−89.93◦ −0.189;−0.125;−89.64◦

left 45◦ 0.168;−0.013; 44.39◦ 0.141;−0.043; 44.77◦ 0.150;−0.033; 44.73◦

right 45◦ −0.195;−0.004;−43.84◦ −0.137;−0.034;−44.84◦ −0.134;−0.033;−45.01◦

of visual interactions.

Another interesting observation is that the weight patterns are
similar for each group of visual interactions (except for interac-
tions associated with eat, as this interaction is less frequently
enacted than the others, and because eat needs a prey in front
of the agent, which makes some of the visual interactions im-
possible to experience). This means that the signature of an
interaction i allows to cluster interactions enabling detection of
the object affording i, even though these interactions cannot be
enacted simultaneously. For example, enacting move forward
and seeing a green element in p is equivalent to enacting turn
90◦ left and seeing a green element in the same position p (the

agent initially ignore that it is the same position) because the
enaction of one of these two interactions makes possible the en-
action of another interaction move forward and seeing a green
element in p’. This property is observed at each position p of
the observable space.

In Figure 16, we represent visual interactions using points.
When a signature designates two visual interactions with
weights of the same sign, the points corresponding to these two
visual interactions are gathered. To help an external observer
to identify signatures, we set positions of visual interactions as-
sociated with the interaction move forward to match their real
positions in space. Then, we draw links between interactions re-

a b c

Figure 16. Relations between signatures. When a signature designates two interactions with weights of the same sign, these two interactions are gathered. To help
an external observer to identify interactions, we set positions of interactions associated with move forward as a reference (a). Neighboring positions are linked by
a line to define a regular mesh. Groups of interactions are represented separately (although they are overlapping). We display the structure obtained with visual
interactions related to seeing blue while turning 90◦ left (b) and seeing red while turning 45◦ right (c). The reference mesh is recognizable: interactions related
to the same position are clustered. The average error among reliable signatures is 0.034 unit of the reference grid. We can observe that the meshes are limited to
positions that the agent can experience in its environment: other positions are too far to be experienced in our test environment.
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Figure 17. Completed context. Interactions that are considered as enactable are
used to complete the environmental context Et (left context) by applying their
signatures. In this example, we can observe in the completed context (right con-
text) that the pattern of enacted interactions is similar for each group of visual
interaction (except for interactions associated with eat, which are not reliable
enough). The color shade indicates the certitude of predicted interaction: the
lighter the color, the greater the certitude. The completed context (right context)
can be used to define the enactability of an interaction with better accuracy.

lated to neighbor positions. Visual interactions related to move
forward thus constitute a reference grid. As can be observed
in Figure 16b and c, this reference grid appears in each group
of visual interactions, indicating that visual interactions asso-
ciated with the same position are clustered. It is thus not nec-
essary to define a priori the positions of visual interactions to
define interactions that characterize the presence of the same el-
ement, which can be useful on a real optic flow system, where
the measured relative speed of the same object depends on the
movement of the agent.

The ability to cluster interactions that characterize the pres-
ence of the same element can be used to complete the inter-
actional context Et by adding interactions that would be en-
acted if their intention have led to the same environmental con-
text. The fact that two interactions associated with different
primary interactions can be considered as related to the same
element makes it possible to consider the simultaneous enaction
of these interactions. Indeed, if an interaction is considered as
enactable, the element affording it can be considered as present.
Then, every interaction that allows this element to be detected
can be considered as enacted. Figure 17 gives an example of a
completed interactional context.

Signatures of interaction can thus be used to define enactabil-
ity of interaction, and then to define the consequences of ge-
ometrical transformations produced by interactions in the ob-
servable context. This second property is used by the distant
object recognition mechanism to recognize distant elements in
the observable space.

5.2. Recognition and localization of distant objects

We add the object recognition mechanism to our agent, and
reuse signatures obtained with the experiment described in Sec-
tion 5.1. This mechanism has two functions: first, it computes
predecessors of signatures according to a set of sequence of in-
teractions. Then, it compares these predecessors to the current
interactional context to detect object instances.

An instance of the object that affords an interaction i is con-
sidered as present at a position σ if S σ

i (Et) > µ (where µ = 0.9),
where S σ

i is the predecessor of S i through sequence of interac-
tion σ, and if the opposite interactions { jk} of i are considered
as failures at this position (i.e. S σ

jk
(Et) < −µ). This condition

allows removal of positionsσ for which the afforded interaction
is ambiguous.

We propose to remove what we call redundant positions to
reduce the number of positions to consider. Two positions are
considered as redundant when one of these positions is longer
than the other one and if a certain proportion (80%) of weights
considered as relevant (absolute value higher than 5 and higher
than 1/3 of the highest weight of the signature) of the signature
predecessor of the longest distance are included in the prede-
cessor signature associated with the shortest position. Then, it
is possible to remove the longest position. This principle en-
sures that the position of an object instance is defined by the
shortest sequence of interactions.

We then define the most relevant positions to remove posi-
tions that lead to the same element of the environment. We con-
sider that two positions leads to the same element if their pre-
decessor signatures share a certain proportion of weights con-
sidered as relevant (20%). It is then possible to bundle together
positions that are related to the same element of the context
when this element covers a large surface of the environment.
The positions of such position bundles are characterized by the
distance and the first interaction of the sequences that compose
them. For each bundle B, we define the most relevant transfor-
mation σ, defined by (11), to find the distance of the detected
object instance.

max
σ∈B

(S σ
i (Et) × ϕd(σ)) (11)

Table 3. List of defined object instances in the configuration displayed in Fig-
ure 18. From left to right, the afforded interaction, the interactions making it
possible to move closer to the object instance, the distance of the instance, the
shortest and most certain places, and the certitude of success of the afforded in-
teraction. The first instance has a null distance as the interaction move forward
can be immediately enacted.

afforded
interaction interactions dist. main positions

0

3 [ ]

4 [ ]

{ , } 6

[ ]
[ ]
[ ]
[ ]

{ , } 3
[ ]
[ ]

4
[ ]
[ ]

5
[ ]
[ ]

19



/ Cognitive Systems Research 00 (2016) 1–30 20

       : (       ; 3 )

       : (      ,     } ; 3 )

       : (       ; 4 )
       : (       ; 4 )

       : ({       ,     } ; 6 )

      : (       ; 5 )

Figure 18. Object instance detection. From left to right: the agent in its environment, the environmental context (in organized form), and the position where
objects are detected, with a sequence limited to 7 interactions, after removing redundant positions. The positions on this representation are computed according
to transformation produced by interactions of the corresponding sequences (the agent cannot access this representation). The environmental context shows that
the agent succeeded to move forward (green square at the bottom) and experienced several secondary visual interactions (top group). The positions in which an
instance is detected are displayed with circles, and a line shows the orientation: red for instances of the object affording move forward, green for bump and blue for
eat. The positions and orientations of objects in the right representation are determined according to the theoretical movements produced by interaction (the agent
cannot access this representation). In this configuration, the instance detection mechanism found one instance of move forward (that can be directly enacted), three
instances of the object affording bump and three instances of the object affording eat. Arrows show the approximate positions of these object instances, designated
in the form afforded interaction, (interaction(s) making it possible to move closest most, distance)

where d(σ) is the distance defined by the length of sequence
σ, and ϕ ∈ [0; 1] a coefficient that balances the influence of
the distance and of the certitude. As variations in certitudes
according to distance are very small, we use a high value (0.99)
in our experiments.

We tested this mechanism in several environmental configu-
rations where elements are placed around the agent. The mem-
ory range is limited to a distance of 7 interactions.

In Figure 18, we set 4 elements around the agent, in addi-
tion to the surrounding border. We can observe the positions in
which object instances are recognized, after removing redun-
dant positions.

After filtering bundles, the mechanism found an object af-
fording move forward that corresponds to the large empty area
in front of the agent, three instances of the object affording
bump, a first one at a distance of three interactions, that can
be moved closer by moving forward (wall square in front of the
agent), a second one at a distance of 4 interactions, that can
be moved closer by turning 90◦ right (right border) and a third
one at a distance of 6 interactions, that can be moved closer by
turning 90◦ left and by turning 45◦ left (left border). The mech-
anism also detects three instances of objects that afford eat: the
first one at a distance of 3 interactions, that can be moved closer
by moving forward and by turning 45◦ right, the second one at a
distance of 4 interactions, that can be moved closer by turning
90◦ left, and the third one at a distance of 5 interactions, that
can be moved closer by moving forward (Table 3). This con-
text of object instance actually characterizes the environmental
context of the agent.

We also tested the precision of the mechanism by comparing

Figure 19. Precision of the object instance segmentation according to surround-
ing elements. Top: the agent considers the two preys as a unique instance of
the object affording eat. Indeed, the two preys are at the same distance from the
agent and can be moved closer by enacting move forward. Bottom: if a wall
is set between the two preys, the agent considers the two preys separately and
with different distances. The presence of the wall invalidates several positions
for the preys, which separates the two preys. The difference in distances indi-
cates that the agent has a preferred side, for which signature predecessors are
more reliable.

20



/ Cognitive Systems Research 00 (2016) 1–30 21

Table 4. List of defined object instances in the configuration displayed in Figure
19 (top). The agent considers the two preys as a unique object affording eat,
“in front of it” (reachable by enacting move forward.

afforded
interaction interactions dist. main positions

0

{ , } 4
[ ]
[ ]

{ , } 6

[ ]
[ ]
[ ]
[ ]

4

[ ]
[ ]
[ ]

Table 5. List of defined object instances in the configuration displayed in Figure
19 (bottom). The agent now considers preys as two distinct objects. The pres-
ence of the wall block invalidates the enaction of interaction eat at positions be-
tween the two preys, which divides remaining positions into two distinct groups
of positions.
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interaction interactions dist. main positions
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the detected object instances in configurations where elements
of the environment are spatially close. In one of these config-
urations, displayed in Figure 19, we set two preys in front of
the agent, separated by an empty space. The agent apparently
considers these two elements to be the same object, which is
normal as these elements are at the same distance and can be
moved closer with the same interaction (move forward). How-
ever, if a wall is set between the two preys, the agent considers
the preys separately: the wall generates a strong separation be-
tween the two preys, by invalidating some object instances near
the middle of the two preys.

The object segmentation mechanism thus takes surrounding
elements of an object into consideration. We can also note that
the two preys are not considered to be at the same distance. This
shows that positions on a certain side are better known by the
agent, and thus more accurate. The experience the agent has
with its environment generates a form of individuation of the
agent.

5.3. Construction and exploitation of a space memory
We test the space memory mechanism (M2) and the exploita-

tion mechanism (M3) on an agent equipped with a simplified
version of the signature mechanism (M1) and object detection
mechanism. These simplified mechanisms are based on obser-
vations from the previous experiments (Sections 5.1 and 5.2)
and define the same properties.

In this section, we first focus on the structure learned by the
agent (signatures of place and signatures of presence) and on
spatial properties that emerge from these structures. Then, we
observe emergent behaviors generated by the decisional system,
by analyzing how the agent interacts with elements of its envi-
ronment, and the influence of the space memory on the agent’s
behavior.

5.3.1. Agent simplifications
We propose a simplified version of the signature mechanism.

A first simplification is based on the observation that signatures
can cluster interactions that are related to the same object, as
shown in Section 5.1. We thus propose to merge visual inter-
actions that are related to the same position and the same color,
regardless of their associated primary interaction. For exam-
ple, move forward and see a green element at position p1 is
equivalent to turn 90◦ left and see a green element at p1. This
simplification significantly reduces the number of interactions
and increases their frequency of enaction. The downside is that
we cannot define the result of visual interactions or select them
as an intended interaction, as they can be enacted as a conse-
quence of more than one primary interaction. However, visual
interactions do not influence the decision mechanism as their
valences are zero. It is thus not necessary to define their signa-
tures. We increase the resolution of the visual field to define a
grid of 50×100 visual positions p, which allows more accurate
observation of the properties of objects defined by the agent.

This simplified signature mechanism was tested with a hard-
coded space memory in a previous work (Gay, Georgeon, &
Wolf, 2014). The signatures of primitive interaction stabilize
after only 2000 enaction cycles. Figure 20 shows these signa-
tures which we will use in the next experiments. The objects
defined by these signatures are similar to the objects defined
by the signatures obtained with the signature mechanism tested
in Section 5.1: move forward is related to the absence of wall
and prey in front of the agent (mid-red blob), bump is related
to a green object in front of the agent and eat is related to a
blue object in front of the agent. The higher resolution allows
more accurate observation of the objects and, in particular the
shape and constitution of these objects. It appears that the ob-
ject affording eat is not only related to a blue object, but also
to the absence of green element on both sides of the blue blob
(mid-red blobs): indeed, a wall corner next to a prey can pre-
vent the agent from reaching the prey. The objects defined by
the agent are thus related to its experience of its environment
and can differ from the objects defined by an external observer.

A second simplification consists in using geometrical trans-
lations rather than sequences of interactional transformations
to define positions in space. This simplification allows a conti-
nuity between positions (and thus associated transformations),
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Figure 20. Signatures of primary interactions obtained with the simplified interactional system after 2000 enaction cycles. From left to right, the signatures of move
forward, bump, eat, turn 90◦ right, turn 90◦ left, turn 45◦ right, turn 90◦ left. Signatures are displayed in a way similar than to the complete interactional system,
except that there is only one group of three overlapping color groups of visual interactions per signature, instead of six. These signatures are similar to signatures
obtained with the previous agent. Signatures of turn interactions are strongly related to the bias of the formal neuron as these interactions cannot fail. The higher
resolution shows that the signature of eat is not only related to a blue element, but also to the absence of green elements (purple circle arc).

thus allowing intuitive observation of signatures of places and
simplifying the object instance recognition mechanism. As the
objects have no specific orientation in our environment, we do
not use rotation to limit the transformation set to a bounded
interval of Z2. We define a set of transformation, for which
each position (x, y) is equivalent to the shortest sequence of in-
teractions σ allowing this position to be reached. We define
the correspondence between positions and sequences of inter-
actions using signatures of the three primary interactions with a
non empty signature (move forward, bump and eat): we gener-
ate predecessors of signatures and find the shortest sequence of
interaction that allows each position (x, y) to be reached. Note
that we used the theoretical movements produced by interac-
tions. As the position and shape of the object designated by
each signature are similar, we obtain a similar correspondence.
We select the correspondence obtained with the signature of
move forward

We then use this correspondence between positions of space
and sequences of interactions to define primitive places. We
consider that move forward and eat generate the same move-
ment. We propose to define distances using geometrical dis-
tances. This ensures that a maximum number of places are con-
tiguous, thus simplifying place signature analysis. The set of
primitive places we used to test the space memory is displayed
in Figure 21.

In the following experiments, the agent begins with the set of
signatures of primary interactions and the set of places defined
in this section.

5.3.2. Space memory specifications
The signatures of places and of presence are implemented in

a similar way as signatures of interactions, based on formal neu-

Interaction Distance
10

1

Figure 21. Set of places defined according to the signature of move forward.
The white point shows the neutral position (no transformation). Colors show
the interaction making it possible to move closest most. The color gradient
shows the distance, from 1 to 10. A distance unit nearly correspond to the
distance covered by enacting the interaction move forward.

rons. The input layer of a neuron implementing a place signa-
ture is organized as vectors [eπi,1, ..., e

π
i,mπ

], where mπ is the num-
ber of observable positions, where eπi,k = 1 when an instance of
the object affording i is detected in the kth position in the list of
positions and eπi,k = 0 otherwise. The certitude of presence in a
place is defined with a linear function of inputs, passed through
an activation function (12). The signature S l of a place l is char-
acterized by the set of synaptic weights [wl,1, ...,wl,mπ

] and the
bias wl,mπ+1 of the associated formal neuron.

The input layer of a neuron implementing a presence sig-
nature is organized, for each object instance ω, as vectors
[eλω,1, ..., e

λ
ω,mλ

], where mλ is the number of places (primitive
and composite), where eλ

ω,k = 1 when the object instance ω is
characterized by the kth place in the list of places and eλ

ω,k = 0
otherwise. The certitude of presence is defined with a linear
function of inputs, passed through an activation function (13).
The signature of presence of a place l is characterized by the set
of synaptic weights [wp

l,1, ...,w
p
l,mλ

] and the bias wp
l,mλ+1 of the

associated formal neuron.

S l(Eπ
i ) = g

 ∑
k∈[1;mπ]

eπi,k.wl,k + wl,mπ+1

 (12)

S p
l (Eλ

ω) = g

 ∑
k∈[1;mλ]

eλω,k.w
p
l,k + wp

l,n+1

 (13)

g(x) = tanh(
x
2

)

Signatures of places and of presence are reinforced by apply-
ing the delta rule (4), with a constant learning rate of 0.05.

The global satisfaction of a candidate interaction cannot take
an object instance into consideration when the agent can inter-
act with this instance in the next enaction cycle. We thus do not
consider object instances for which the estimated distance is
less than 1. As the system is not accurate, we increase this limit
to 2 to ensure that a close object instance that may be interacted
in the next enaction cycle will not be taken into account.

We use the following coefficients, as they provide a good
compromise between the influence of close elements and the
influence of distant elements:

- object coefficient γ = 1
- influence coefficient of the space memory β = 15
A modification of these coefficients does not affect the func-

tioning of the decisional mechanism. However, it influences
the emergent behaviors of the agent, as it modifies the attrac-
tiveness of object instances according to their distances. With a

22



/ Cognitive Systems Research 00 (2016) 1–30 23

low space memory coefficient, the valences of interactions have
a greater influence than object instances: the agent thus selects
the interaction move forward more often because the valence of
this interaction becomes higher than the utility values defined
by object instances. The object coefficient influences the attrac-
tiveness of object instances according to their distance: with a
high value, distant object instances have little influence on the
decision, while a low value makes the agent strongly influenced
by distant object instances. Figure 22 shows an example where
a wall block is closed to a prey: with a low object coefficient,
the distance of an object instance has little influence on its at-
tractiveness. In this situation, the agent is strongly attracted by
the prey, but also repulsed by surrounding wall blocks, which
prevents the agent from moving toward the prey. With a higher
object influence, the agent moves toward the prey, as it is at-
tractive, but remains at a reasonable distance from wall blocks.
The variation of influence of object instances according to their
distances enables the agent to move toward the prey without be-
ing repulsed by surrounding walls that are further away. With
a high object coefficient, object instances have little influence
on the behavior of the agent, which turns toward the prey only
when the prey is very close to the agent.

a b

c d

Figure 22. Influence of the object coefficient on agent behavior. a) with a low
coefficient (γ ∈]0; 0.5]), the distance of an object instance has a small influence
on its attractiveness. In this situation, walls are strongly repulsive (although
they are further than the prey), thus preventing the agent from moving forward
the prey. b) and c): with a higher object coefficient (0.6 for b) and between 0.7
and 1.1 for c) ), the difference in influence between the prey and surrounding
walls make the agent move toward the prey until it reaches it. We can observe
that the agent remains at a reasonable distance from the wall. d): with a high
coefficient, the object instances have a very small influence on agent behavior:
the agent is not repulsed by the wall and turns toward the prey only when the
latter is very close to the agent

.

We limit the length of the path of composite places to a max-
imum of 2, which is the minimum length allowing updating of
a position of the global space. Indeed, with a visual field of

180◦ and a rotation of 90◦, the space memory can characterize
every position of its global space with composite places with a
path of length 1. With a path of length 2, it is possible to evoke
a composite place l which can result in a composite place with
a path of length 1 after an update of the path of l. As places
with a path of length 1 are sufficient to characterize the global
space, we limit the context of presence Eλ to primitive places
and composite places with a path of length 1.

Each object instance is characterized in the space memory by
two lists of places. The first list gives places that characterize
the position of the instance with a high reliability. This list is
updated by updating the path of composite places. Thus, this
list can characterize the position of an instance for a maximum
of two enaction cycles, but with a high reliability. The first list
is used for the presence signature learning process. The sec-
ond list gives places that characterize the position of an object
instance with a lower reliability, and is updated both by updat-
ing the path of composite places and by evoking places through
presence signature. This list characterizes the position of an in-
stance for long sequences of enaction cycles, until the object is
observed again or if there are no known places to evoke. The
exploitation decision mechanism uses the first list as long as
this list is not empty. It then uses the second list.

5.3.3. Learning structures of the space memory
We first let the agent move in its environment, driven by the

place signature learning mechanism. After 50 000 enaction cy-
cles, most of the signatures of places are stabilized. Figure 23
shows a sample of place signatures. Signature weights are or-
ganized topographically to match the position associated with
each weight. A white pixel indicates a positive weight and a
black pixel a negative value. A gray pixel indicates a value of 0.
We can easily recognize the areas that belong to each place. We
can also observe that signatures of composite places define ar-
eas that extend into the non-observable space, especially with
composite places with a path composed of a turn interaction.
This extension of places into the non-observable space shows
that composite places can be used to define the presence of ob-
ject instances in the global space.

Once signatures of place have emerged and stabilized, we let
the agent learn presence signatures by activating the presence
signature learning mechanism. The exploitation mechanism
is also activated but is useless at this time as a large amount
of signatures (both place and presence signatures) are unreli-
able. Note that autonomous activation of the presence signa-
ture learning process is still an open question. Learning reliable
presence signatures takes nearly 50 000 additional enaction cy-
cles.

The presence signatures show how places can be connected
when they are related to the same area. Figure 24 shows some
examples of presence signatures. These signatures show that
the four displayed places can be associated with place [turn
45◦ right][{turn 90◦ right;2}〉 and [turn 45◦ right][{turn 45◦

right;2}〉. The similarity between these signatures indicated that
these four composite places characterize similar areas in space.
These signatures explain the space memory update observed in
Figure 11.
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Figure 23. Sample of place signatures after 50 000 enaction cycles. The first row shows the place signatures of primitive places characterized by a distance of 5
(this distance was selected because these signatures are the easiest to read). The weights of each signature are organized to match the position of the corresponding
position. The neutral translation, that corresponds to the position of the agent, corresponds to the center of the signature. White areas show positions that are
considered as part of the area covered by the corresponding place, while black areas show positions that are considered as out of the area. The dark half-circle in
signatures corresponds to the area covered by the visual field of the agent (the depth of the visual field is limited by the length of the environment). The area defined
for each place is clearly defined. The next rows show the place signatures of composite places composed of the above primitive place and a path composed of the
interactions displayed on the left. We can recognize the white areas of signatures of primitive places, which are moved according to the translation produced by the
path (rotation and translation). We can guess that some of these areas extend into the non-observable space (especially with the signatures of [turn 90◦ left][{move
forward;5}〉 and [turn 90◦ right][{move forward;5}〉). These composite places are thus suited for characterizing the presence of an object in the non-observable
space.

5.4. Emergence of behaviors
The following experiments test the space memory mecha-

nism and the exploitation decision mechanism. We thus de-
activate the signature learning mechanisms so that they cannot
interfere with the exploitation decision system. A first set of
experiments shows how the agent interacts with elements of the
environment, and thus shows how the agent interprets elements
of its environment. A second set of experiments shows how the
space memory influence the agent’s behavior and guides it to
elements of the environment even when they are masked after
their detection.

5.4.1. Interaction with elements of the environment
We first observe how the agent considers elements of its en-

vironment and interacts with them. We exploit here the fact
that the agent is attracted by preys. Indeed, the agent recog-
nizes them as objects affording the interaction eat, which has a

very high valence. We can thus force the agent to take another
object of its environment into consideration, by placing another
element the path leading the agent to the prey. We first used an
alga, then a wall.

We first let the agent discover the prey, then we hide it with
algae (Figure 25). It appears that the agent moves through al-
gae as if they were not present. Indeed, algae have the same
interactional properties as an empty space as they have no in-
fluence on the enaction of move forward, which is confirmed
by signatures of primary interactions that do not integrate vi-
sual interactions related to seeing a red element: weights re-
lated to visual interactions that consist in seeing a red element
have a low value. Thus, the agent considers that algae are (in-
teractionally) the same objects as empty spaces. The fact that
the agent considers algae as empty spaces shows that it takes
affordances into consideration rather that elements of its envi-
ronment. We can also observe that the agent is still attracted by
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Figure 24. Sample of presence signatures. Signature weights are organized as follows: weights related to primitive places are organized in the left group according
to the interaction and the distance that characterize them (left rectangle). Weights related to composite places are organized in a similar way, each group shows the
weights related to composite places composed of the given path (seven right rectangles). The context is limited to primitive places and composite places with a
path of length 1, as these places are sufficient to characterize the global space. White weights show the set of places that characterizes the area associated with the
composite place (left), and black weights, the set of places that do not. These signatures look similar as the four displayed composite places are related to close
areas. These signatures show that the four displayed composite places are mainly related to places [turn 45◦ right][{turn 90◦ right;2}〉 and [turn 45◦ right][{turn 45◦

right;2}〉. This means that if the position of an object instance is characterized by the two places displayed under signatures, then the four composite places may
also be used to characterize the position of this object instance.

t
Figure 25. Behavior of the agent in presence of an alga. Top: the interactional context. We first let the agent discover a prey (left), detected as a positive object
because it affords an interaction with a high valence. We set an alga between the agent and the prey, on the agent’s path (middle). We observe that the agent moves
through algae as if they were not present: algae become interactionally equivalent of empty spaces, as they both afford move forward. Bottom: the estimated position
of the prey in space memory, obtained by adding place signatures of places that characterize the position of the instance affording eat. The prey disappears from
memory when eaten: the space memory thus integrates the fact that a prey disappears from the environment when the agent eats it.

the prey, which confirms that the prey is stored in memory.
We then repeat this experiment with a wall block (Figure 26).

This time, the agent turns to avoid the wall block when its in-
fluence becomes greater than the prey. The agent then turns
around the wall, and when the interaction move forward does

not make the wall come closer, the agent continues to move to-
ward the prey (right). This behavior illustrates the principle of
the space memory: during the first enaction cycles, the relative
difference in distance between the wall block and the prey is
small. As the prey affords an interaction with a higher valence
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Figure 26. Behavior of the agent in presence of a wall. Top: the interactional context. We first let the agent discover a prey (left). We then set a wall between the
agent and the prey, on the agent’s path (middle). The agent turns to get away from the wall (right): this element is considered as negative as it affords the interaction
bump. The agent then gets around the wall, and move toward the prey. Bottom: the estimated position of the prey according to the space memory. The timeline
displays the estimated position until the agent can observe the prey again (enaction cycles 1 to 8).

(in absolute value) than the wall block, the agent is more at-
tracted by the prey than repulsed by the wall. While the agent is
approaching, the influence of the wall becomes higher than the
prey, which makes the agent turn, as turn interactions allows
it to escape from the wall. Once the agent has bypassed the
wall block, the interaction move forward has a positive utility
value, as it does not make it possible to move closer to the wall
anymore. The agent thus moves forward again and reaches the
prey. This avoidance behavior shows that wall blocks are now
considered as negative objects. Indeed, the agent recognizes
walls as objects that afford the interaction bump, which has a
negative valence.

In these two experiments, we observe that when the agent
eats a prey, this prey disappears from its memory: the agent
thus integrates the fact that eating a prey makes it disappear.
However, in certain configurations (see Figure 27), the agent
may believe that another prey can be present beside the posi-
tion of the eaten prey (the dark blob at the positions near the
agent shows that there is no prey in this area). This occurs be-
cause the agent experienced several times the situation where
two preys are adjacent, and considered as a unique object in-
stance: when the agent eats one of these preys (generally the left
prey as the agent has a preference for its left side), the other prey
remains near the agent (generally, on its right side). We also ob-
served that if we remove the prey before the agent reaches it, the
agent, that cannot observe the absence of an object, generates
an erratic behavior, wandering near the estimated position of the
missing prey. Indeed, the space memory indicated the presence
of a prey in front of the agent, that may disappear if the agent
enacts move forward while the interaction eat is not considered
as enactable. This behavior stops when the prey vanishes from
the space memory.

5.4.2. Influence of the space memory
This second set of experiments shows how object instances,

stored in the space memory and not visible anymore, can influ-
ence the agent’s behavior. We exploit the fact that the algae are
considered as empty spaces by the agent for hiding elements in
the observable space. Thus, it is possible to observe the esti-
mated position of objects stored in memory with the place sig-
natures of places that characterize the position of this object.
In this experiment, we propose to compare the behavior of the
agent in a reference context, containing a prey, and in a second
context where a second element is added. The comparison of
behaviors in these two contexts allows to observe the influence
of the second object on the decisional mechanism. The ele-
ments are masked by algae after being detected by the agent, to
ensure that the agent’s behavior is only influenced by the object
context given by the space memory.

To better visualize the estimated position of object instances,
we propose to display the estimated certitude of presence ĉp,ω of
an object instance ω in a position p of the observable space by
adding, weight by weight, place signatures of places that char-
acterize the position of ω. The result values of each position
are then normalized according to the highest value (in absolute
value):

ĉp,ω =

∑
l∈ω

wl,ω

max
p

(|ĉp,ω|)
(14)

These certitude values are organized topographically accord-
ing to the related position in space. A white pixel indicates that
the instance may be present at the corresponding position with
a high certitude, while a black pixel indicates that the instance
is absent from the corresponding position with a high certitude.
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Figure 27. We let the agent discover the prey (left), then we hide the environment with algae (middle). The agent moves through algae with an efficient path (only
one rotation) and reaches the prey (right). Bottom: the estimated position of the prey at each enaction cycle. The estimated position is obtained by adding place
signatures of places that characterize the position of the object. The white blobs show the positions in which the object instance is likely to be. We can observe,
on the last enaction cycle, that the agent believes that another prey is present on its right side (while the position of the eaten prey is considered to be empty). This
means that during signature learning, the agent experiences several times the situation where two preys are adjacent.

Figure 28. Agent in a symmetrical context: when the agent tries to reach the prey, it makes an error in estimation of the prey position. The agent then misses the
prey, with an error smaller than a agent’s step length. Left: the estimated position of the object instance affording eat according to the space memory. The agent is
thus more fluent on its left side, due to asymmetries in its signatures of place and presence.

A gray color indicates that the certitude at this position cannot
be defined, because the position is out of the observable space
experienced by the agent or because the object instance van-
ished from the space memory. Thus, the lighter the position, the
higher the certitude of presence in this position. Obviously, the
lightest positions are at the intersection of the largest amount of
places.

We begin with the reference context displayed in Figure 27:
we place a prey on the left part of the agent’s visual field. We
then let the agent enact an interaction (here, move forward) to
allow it to discover its environment. We then mask the environ-
ment with algae. The agent generates an efficient behavior con-
sisting in moving forward until the prey is aligned, then turning
90◦ left and finally moving forward to reach the prey. We ob-

serve that the space memory is precise enough to estimate the
moment when the agent has to turn. The estimation of prey po-
sition shows that the place update mechanism is able to track
the invisible prey and give a correct estimation of this instance.

In a symmetrical situation, we observe that the agent misses
the prey (Figure 28): the agent enacts an additional move for-
ward interaction before turning. The agent then turns right and
tries to align toward the prey. However, due to the lack of pre-
cision in the space memory, the agent cannot reach the prey,
although the error was smaller than a step length. This observa-
tion shows that there are asymmetries in the signatures of place
and presence and in the learning process. These asymmetries
are mainly due to the order of interactions in the interactional
set I that makes a bias in the signature learning mechanism. The
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Figure 29. We add a wall on the path previously observed. The agent begins in the same conditions as before. Bottom: estimated position of the prey and the wall
in space memory. The top timeline shows the estimated position of the prey. The bottom timeline shows the estimation of the position of the wall block. We can
observe that the agent uses another path to reach the prey. This experiment shows that the agent takes every object stored in its space memory to adapt its behavior.
We can also note that the prey disappears from the space memory.

agent is thus more familiar with its left side: its experience of
its environment affects the reliability of its environment internal
model and influences its behavior.

For the second part of the experiment, we add a wall block
on the path used by the agent in the first part of the experiment
(Figure 29). The agent starts at the same position and with the
same signatures as before. We let the agent enact an interaction
to discover its environment, and mask the environment with al-
gae. We then observe that the agent is influenced by the wall
present in the space memory: the agent uses another path that
avoids the wall. It begins by turning left, moves forward to pass
the wall block, turns to align toward the prey and finally moves
toward the prey.

The agent turns after only two enaction cycles, which shows
that the behavior is not a simple modification of the previous
behavior for bypassing a wall on the initial path, but is a differ-
ent behavior that includes the wall presence right from the start.
This variation in behavior indicates that the agent is influenced
by every element of its memory, as it takes both the prey and
the wall into consideration.

6. Conclusion

We proposed a mechanism that allows an artificial agent to
discover and integrate properties of its environment and that ex-
ploits this emerging knowledge to generate behaviors that sat-
isfy a form of intrinsic motivation called interactional motiva-
tion, with the least possible predefined ontology about its envi-

ronment and its sensorimotor possibilities. The agent defines a
low-level semantics for its environment based on the valence of
its interactions.

An agent equipped with this mechanism can construct a spa-
tial memory that integrates spatial properties of its environment
and generates a context that characterizes elements of the en-
vironment escaping the agent’s sensory system. The precision
of this spatial memory, which depends on the interactional pos-
sibilities of the agent, is low but sufficient to help the agent
characterize its situation and generate behaviors that satisfy its
interactional motivation.

The experiments demonstrate that the mechanism satisfies
the five principles defined in Section 1.3:

- The agent is intrinsically motivated as its decisions are
based on the principle of interactional motivation. This prin-
ciple implies that no information about the environment is
needed: the agent does not use the notion of environmental
states or the notion of extrinsic reward.

- The agent defines its own internal object models through
signatures of interactions. Objects defined by the agent are
characterized by properties of elements of the environment that
afford interactions as experienced by the agent. The agent can
thus directly exploit these models as they consist of interac-
tional properties. The objects defined by an agent can differ
from objects that an external observer with different possibil-
ities of interaction could define. Thus, where we, as external
observers, defined empty spaces and algae, the agent defined
a unique object that can be crossed. The agent also considers
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long border walls and wall blocks as a unique object that affords
the interaction bump.

- The agent can integrate surrounding space and its spatial
properties without using the notion of geometrical space: ob-
ject instances are recognized by backmoving signatures of in-
teractions according to a sequence of interactions. Signatures
of place and signatures of presence characterize spatial proper-
ties of the environment in terms of interactions. Thus, the agent
constructs its own notion of space based on interactions.

- Signatures of place and signatures of presence are used to
update the estimated position of object instances stored in the
space memory. The space memory can then track object in-
stances even when the agent can no longer perceive them, which
constitutes a form of object permanence.

- The space memory generates a context of object instances
that can be used by the agent to select intended interactions in
order to maximize its interactional motivation principle in the
short and medium term, by considering interactions that can be
enacted in a near future, characterized by object instances. The
decisional mechanisms presented in this paper are rudimentary
but generate behaviors adapted to the agent’s motivational prin-
ciples.

The different components of the global mechanism were
tested separately. Testing the interaction signature mechanism
(M1) and the interaction signature learning mechanism first is
possible and pertinent as the interaction signature learning pro-
cess constitutes the first stage of the agent’s learning process.
Testing the object recognition mechanism alone is also possi-
ble as this mechanism does not rely on a learning process. We
tested the place and presence signature learning processes with
a partially hard-coded and simplified version of the interaction
signature learning and object recognition mechanism. These
hard-coded mechanisms implement properties observed with
their agnostic equivalent mechanism, which allows to investi-
gate the construction of a space memory in controlled condi-
tions. However, we cannot observe any side-effects that can
emerge from simultaneous learning of interaction, place and
presence signatures.

We tested our mechanisms in a simplified environment, on
agents equipped with limited sensorimotor possibilities. We
simplified our experimental system for practical and technical
reasons: first, we needed to reduce the complexity of our mech-
anisms to observe more precisely properties emerging from the
learning process. As an example, with a 3D environment, it
would be difficult to observe and interpret signatures of interac-
tions, which would be displayed as 3D structures. We limited
the number of colors to 3 to display signatures with RGB im-
ages rather than multiple columns (as we do in Figure 5, before
overlapping columns). However, the environment is still more
complex than the interactional possibilities of the agent: there
are objects with the same interactional properties (such as al-
gae and empty spaces) and elements of different sizes (walls),
which allow us to observe how an agent equipped with a RI
decisional system can interpret an environment that exceeds its
sensorimotor possibilities.

6.1. Perspectives

In future work, we intend to extend this decisional system
to more complex agents, to enable them to interact with more
complex environments using improved possibilities of interac-
tion:

- agents in dynamic environments, by simultaneously using
spatial and sequential (Georgeon & Ritter, 2011) interactional
mechanisms. Further works (Gay, Hassas, 2015) have shown
that coupling the space memory with sequential mechanisms al-
lows integration of dynamic properties of the environment, and
thus, prediction of movements and tracking of mobile elements.

- simultaneous enaction of intended interactions: living be-
ings move by using multiple muscles simultaneously. Modify-
ing the Radical Interactionism model to integrate this property
will help to generate more complex behaviors.

- inter-agent interactions: the current version of our agent
cannot interact with another agent. Defining interactions that
allow simple communication between agents will help form
groups of agents and let low level social behavior emerge.

Our implementations used predefined and constant interac-
tion valences to investigate our mechanisms in consistent condi-
tions. We intend to study the possibilities of using valences that
can depend on agent’s internal states, such as hunger or tired-
ness: as an example, the interaction eat can have a high valence
when the agent is starving and a low or negative valence when
the agent is satisfied. As the object semantics defined by the
agent is based on valences of interaction, rather than an object
property that needs to be discovered, elements became imme-
diately attractive or repulsive depending on the agent’s internal
states.

Similarly, the influence coefficient of the space memory and
the object influence coefficient can depend on internal states: an
agent in a critical state may generate short term behaviors based
on close objects and immediately enactable interactions, while
a satisfied agent can afford to consider distant possibilities of
interactions and long-term behaviors.

The current object detection mechanism eliminates ambigu-
ous objects (see Section 5.2). A curiosity mechanism can be
added to make ambiguous objects attractive, thus leading the
agent to interact with these objects and categorize them with
other interactions.
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